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Research has been carried out in the areas of (1) laser spectroscopic
line shapes, (2) coherent transients including collisional effects, (3)
laser-assisted collisions, (4) collision-induced resonant structures in
laser spectroscopy (5) collision kernels and transport coefficients, and

(6) interactions with broadband noise.

1. Laser Spectroscopic Line Shapes (M. Gorlicki, P. Berman)

A collaboration with Duncan Steel (Univ. of Michigan) was initiated
to develop the mutual exchange of theoretical and experimental information
regarding high resolution laser spectroscopy. The initial problem which was
studied involved the four-wave mixing signals generated in Na vapor using
lasers having various polarizations. It was theoretically predicted and
experimentally verified that, for polarizations in which magnetic state
alignment or orientation was not conserved, narrow resonances (characterized

* D%
? Such resonances could serve

by the ground state width) can be observed.l
as the basis for an optical filter or be used to lock two laser frequencies
together. The theory of these resonances involves a calculation of the
creation and spontaneous decay of polarization gratings. It has recently
been suggested to us that these processes may be important in the cooling

of trapped atoms below the Doppler limit.3

In a related calculation, we showed that velocity-changing colli-
sions can also lead to narrow resonances in four-wave mixing.a* If the ground
and excited state collision rates for a two-level atom differ, collisions
result in non-conservation of population for a given velocity class of atoms.
This lack of population conservation again results in resonances characterized
by the ground state width. Recently, Steel was sble to use a modified version

. . . 5
of our theory to explain experimental results that he has recently obtained.

It might also be mentioned that a theory of collisionally-induced

*
Rayleigh gain which we had developed6 (but which was only recently published)7

has received a great deal of experimental interest. This gain is used to

generate new fields in multiwave mixing in both linear and ring configurations.

% An asterisk indicates that a reprint or preprint of this article has been
forwarded to the Scientific Officer with this report. Reprints of articles
have been furnished to DTIC with this report. Preprints or reprints of
articles are available on request to anyone receiving this report.
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2. Coherent Transients Including Collisional Effects (R. Sung, P. Berman)

We have finished an analysis of an extended-pulse echo experi-
ment carried out by Mossberg's group several years ago.9 In their quali-
tatative analysis of the problem, they argued that the strong field in
the second excitation pulse could quench collisional effects. We have
shown that this interpretation is questionable.lo*’ll* A detailed
analytical and numerical solution of the problem of a strong transient
field interacting with an ensemble of atoms also subjected to velocity-
changing collisions has been carried out. Using this solution, we have
analyzed a two-photon echo experiment in which the second pulse's duration
is comparable to an atomic decay time. It was found that, even for weak
excitation fields, a long second excitation pulse can ''quench'" collisional
effects. This phenomenon is conveniently explained in terms of a set of
equivalent stimulated photon echo excitation schemes. For strong fields,
the overall explanation of the '"quenching' process is not changed signifi-
cantly, implying that our interpretation of the quenching differs from
that of Mossberg's group. The agreement between theory and experiment is
good. The techniques that were developed for this problem can be applied
to other transient problems involving collisions. A previous articlelz*

on the transient probe spectrum for a driven two-level atom has appeared.

3. Laser-Assisted Collisions (P. Berman)

Our modified theory of Laser-Induced Collisional Excitation
Transfer (LICET) gives good agreement with most of the LICET experiments

* * *
carried out to date.l3 s14%,15

The theory, which includes the contribution
of a nearly-resonant intermediate state, has cleared up a long-standing
mystery on the detuning dependence of the quasistatic tail of the LICET
profile. Work on the model is continuing, in collaboration with A. Bambini

(Florence).

In another LICET calculation [in collaboration with F. Schuller
(Univ. of Paris - XIII)], we have calculated the magnetic state polari-
zation produced in the quasistatic wing of the LICET profile. The calcu-
lation possesses interesting differences from that of collisional redistri-
. 15% . . , . N
bution. We are preparing a manuscript in which the various physical

mechanisms giving rise to the final state polarization are examined.
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4. Collision-induced Resonances in Laser Spectroscopy (P. Berman)

In collaboration with G. Grynberg (Univ. of Paris), we have developed
a unified interpretation of pressure-induced resonances. Both collisionally-
aided radiative excitation (CARE) and pressure-induced extra resonances in
four-wave mixing (PIER4) are explained on the basis of conservation of energy
arguments.l6* The theory is formulated using both bare - and dressed-state
approaches, and some new aspects relating to the quantum statistics of the
fields are described. Moreover, we have predicted new classes of experiments,
such as fluorescence beats and two-photon ionization, in which collision
induced resonant structures should be observed. Duncan Steel has indicated

that he might try to carry out the experiments to test the theory.

5. Collision Kernels and Transport Coefficients (G. Rogers, P. Berman)

Our previous work on the relationship between collision kernels
17,18% . .
7,18 has proven to be useful in analyzing an
*
experiment on Na - rare gas velocity-changing collisions.19 Using a theory

and transport coefficients

including the effects of fine-structure changing collisions, we were able
to fit all the data with only one free parameter, These results have impli-
cations for a successful modeling of the optical piston.20 We are trying
to extend some of this work to relate the coefficients of thermal conducti-

vity and viscosity to the collision kernels encountered in laser spectroscopy.

6. 1Interactions with Broadband Noise (V. Finkelstein)

Recently, it has been appreciated that broadband noise can be used
as a source of femtosecond time resolution.Zl The theory of such processes
is complicated owing to the fact that the four-wave mixing interaction used
to generate the signals involves the use of a noise pulse and its time-delayed
image. The correlations between the pulse and its time-delayed replica create
an effective interaction which is non-Markovian. We are working on the theory
of this problem in the limit of intense pulses. Ultimately, we hope to compare
our theoretical results with the experimental ones of the groups of Hartmann22

and LeGouét.23
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Narrow Resonances in Four-Wave Mixing
Due to Radiative Decay

Jing Liul, G. Khitrova2, D. Steel!. and P. Berman?

1Departments of Physics and EECS. University of Michigan.
Ann Arbor. MI48109. USA
2Department of Physics. New York University, New York, NY10003. LSA

The early work of Bloembergen and co-workers on pressure induced
extra resonances (PIER-4) verified earlier predictions that
resonances in nonlinear spectroscopy can result froms incomsplete
cnncellatipn of quantum mechanical amsplitudes in the presence of
collisions . This work was followed by a demonstration of
collision induced narrow resonance in backward nearly
degenerate four-wave aixing (NDFWM) which have a sisilar
phyaical origin.

In the current sork. we demonstrate that such resonances
can be observed in collisioniesa systems due to spontaneocus
emission. I[n a two level Doppler broadened aystem, the NDFWM
response is characterized by two resonances as a function of the
pump~-probe detuning, ° The firat resonance, at 6=0, has a
linewidth determined by the relaxation of the ground state and
excited state. The second resonance, at &6 equal to twice the
pump-resonance detuning, has a width determined by the decay
rate of the dipole coherence. In this work, we are concerned
with the first resonance only.

If the systea is closed (i.e., the excited state can decay
only to the ground astate) then the population difference decays
at the apontaneocus emission rate, and the linewidth of the J&=0

resonance is given by L However, if the systeam is open”

(for example., the upper state can radiatively decay to a long
lived state other than the initial atate asuch as a different
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Fig. la NDFWM @spectra on Pig. 1b Calculation normalized
the S”a(!=2) to Pvl(l=2) to Yap- The dashed line
transition. accounts for Doppler broadening.
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bhyperfine or Zeesan sublevel of the grouad atate), then the
population difference decave with two comsponents that have decay
rates detersined DbY the inverse upper and lower state lifetimes.

These effects are observed in NDFWM seasuresenta of atomic
sodium. Fig. la shows the NDF¥WM apectrum recorded on the
s,,,(!=z) to P.,;(?=2’ transition. In the absence of the

yv’(pzz) decay to the F=1 ground state, the systems would be

closed and both of the resonances would have the sase width, 20
MHs. However, the observed linewidth of the &=0 resonance is 7
MHs. This width 1is in excellent agreesent with the analysis
(rig. 1 based on an open system which gives a nouvanishing
amplitude for the zarrow resonance (8olid curve). The dashed
line includes Doppler broadenins. The results show a long~-lived
coaponent in the population difference with a width detarmined
by the transit time and residual Doppler effects. {Note, unlike
a coherent Rasan effect. all three input beame are nearly
resonant with tde S (¥32) to P _,(¥=2) transition.)

fig. 2a shovs the NDFWM spectrus recorded on the
suq(p=2)-9‘,‘(!=3) tranaition. The data showa 2a new feature

shich is a dip o the firet resonance. To understand this, we
note that earlier descriptions have ignored the effects of
alignwent and orientation ahich contribute to the response in a
aystes with sagnetic substate degeneracies. For the F=2 to F=3
tranpsition, tbe population 1is consarved and the ayatem is closed
for population. Rowever, ajince the field can transfer net
orientation or alignment to the atom, one can show the syates i8
not cloaed. The resulting ground state alignment and
orientation lead to a nonvapishing asplitude for the narrow
comsponent which sanifeats itself as a dip imn the resonant
structure centered at 6z0. The width of thia dip 1is again
determined by the inverse vranait time and residual Doppler
width. For thise trsnsition. the sign of the ground state
component is opposite to the sign of the upper state component,
producing the dip. Agreement with theory is excellent, as shown
(for the first resonance) in Fig. 2b.
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Fig. 2a NDFWM spectirus of the Fig. 2b Calculation of the
s”d(r=2) to P,/3(!=3) transition. first resonance, norsalized
to r
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In susmary. these data and analysia show the effects of
decay of the excited state to a state other than the initial
state of excitation. We anticipate that this understanding will
be important in understanding frequeacy or time domain
seasurements in other saterials such as the spectroacopy of

resonant systemea in solids.
This work was supported by ARO, ONR, and NSF (PHY8415781).

1. N. Bloembergen. in Laser , edited by H. Walther
and K.W. Rothe (Springer, Berlin, 1979), pJ40. Yehiam Prior,.

etal, Phys. Rev. Lett. 48, 111 (1981).
2. J.F. Lam, D.G. Steel, and R.A. McFarlane, Phys. Rev. ULett.

48, 1628 (1982), also 56, 1679 (1986).
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ON THE CONNECTION BETWEEN COLLISION KERNELS AND TRANSPORT COEFFICIENTS

P.R. BERMAN
New York University, 4 Washington Place, New York, N.Y. 10003

A connection is made between classical transport theory
and the usual description of collisional processes in laser
spectroscopy. In classical transport theory, collisional
processes are described in terms of either transport co-
efficients or collision integrals. In analyzing the in-
fluence of collisions on laser spectroscopic line shapes,
collisions are often described in terms of collision
kernels. Two sets of equations are obtained relating the
collision integrals to the collision kernels. While these
two sets of equations are equivalent for any physically
realistic kernel, they need not be equivalent if one

carries out calculations using phenomenological kernels.

If the two methods give similar collision integrals for

a phenomenological collision kernel, it may serve as a
justification for the use of that kernel. It is shown

that the two methods do give very similar results for the

3 Keilson-Storer kernel but give dramatically different re-

| sults for a "difference" kernel (a kernel that is a function
i of the difference between the initial and final velocity).
The calculations, carried out for a low-density binary gas
mixture, provide a link between classical transport theory
and the collision kernels commonly used in analyzing experi-
ments in laser spectroscopy. Implications of the results to

experimental situations of current interest are explored.

The research described in this report was carried out during my visit
to Huygens Laboratory in November, 1985. The work represents a collabo-
rative effort between Drs. Haverkort, Woerdman, and ryself. I was for-
tunate to be able to be a visitor at the University of Leiden, an insti-
tution that has in the past, and continues to be, and important center for
) research in kinetic theory. In this environment, it was possible to com-
4 bine some of the results I had obtained in analyzing the effects of colli-

sions on laser spectroscopic line shapes with concepts originating in the

~
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¢cransport theory of gases. What emerged from this study was a method for
relating the collision integrals and transport coefficients of transport
theory to the collision kernels commonly used in spectroscopic line

shape analysis.

It is the aim of this report to recall some of the results of that
study and to suggest possible paths for continued research in this subject
area. Details of the calculations can be found in Reference [1], which
is hereafter referred to as I; "Transport Theory" will be abbreviated
as "TT", while "the study of collisional processes using laser spectro-
scopy" will be referred to as "CLS".

Fundamental to both TT and CLS is a knowledge of the intermolecular
potential. Armed with expressions for the intermolecular potential, one
can proceed, in principle, to calculate the scattering amplitudes and
differential scattering cross sections which characterize collisions in
a vapor. From the differential scattering cross sections, it is possible
to arrive at expressions for the transport coefficients of TT or the
collision kernels of CLS. Although TT and CLS share a common language at
the level of the differential scattering cross section, there has not
been much dialogue between researchers working in these two areas. Un-
doubtedly, this is due to the different techniques and vocabulary em-
ployed in TT and CLS, as well as the different types of physical processes

which are probed in both approaches. This lack of "crosstalk" between
the two disciplines is unfortunate, since several of the results achieved
in TT (CLS) can be used to complement those of CLS (TIT).
T

Owing to density, temperature or velocity gradients within a vapor,
physical observables such as momentum and energy are transported from
one part of the vapor to another. Such transport processes can be
characterized by coefficients of diffusion, thermal conductivity and vis-
cosity. These coefficients can be measured experimentally and can be
calculated assuming a specific form for the intermolecular potential.
Although the values for the transport coefficients reflect the nature of
the intermolecular potential, they are essentially moments of a dis-
tribution function and, as such, provide considerably less information
than the distribution function itself. 1In other words, the transport
coefficients characterize the non-uniform state of a vapor, but cannot
be used to map out the intermolecular potential. This situation is some-

what reminiscent to that encountered in the impact limit of the pressure




e e e —

r—

proadening of spectral line shapes - the collision-induced line width
and shift are sufficient to characterize the line shapes, but, as quan-
tities representing an average over collision parameters, they shed
1imited light on the intermolecular potential.

In order to calculate the transport coefficients in a systematic
manner, one can follow an approximation scheme developed by Chapman and
Enskog [2]. For a vapor in thermal equilibrium having a Maxwellian veloc-
ity distribution, there is no average transport of momentum, energy, etc.,
across a given plane in the vapor. Transport results from deviations of
the distribution function from Maxwellian. In Chapman-Eskog theory, it
is assumed that the distribution function remains close to Maxwellian so
that an expansion of the distribution function about a Maxwellian is
permissible. This procedure allows one to linearize the Boltzmann equa-
tion and to obtain an approximation scheme for calculating both the dis-
tribution function and the transport coefficients to arbitrary degrees of
accuracy for a given intermolecular potential. For moderate temperature,
density and velocity gradients in the vapor, the deviation of the distri-
bution function from Maxwellian is not excessive and the expansion con-
verges rapidly. The transport coefficients are expressed in terms of a
few "'square bracket integrals" [3] or "effective cross sections" [4]
which give the appropriate transport characteristics of the vapor. More-
over, for a well-defined intermolecular potential, the square bracket in-
tegrals or effective cross sections can be related to the so-called

collision integrals (to be defined below), which represent an integral

over a given function of the collision scattering angle. Thus the ob-
jective of TT is to obtain expressions for the collision integrals from
the intermolecular potentials and then obtair. the transport coefficients
from the collision integrals.
CLs

In "traditional” line shape studies, collisions are found to broaden
and shift absorption and emission profiles. As mentioned above, the
broadening and shift parameters can be viewed as somewhat analogous to
the transport coefficients. With the advent of laser spectroscopy, addi-
tional information about collisions occurring within a vapor can now be
derived from line shape studies. In a typical laser spectroscopy experi-
ment, one excites a specific velocity class of atoms using a nearly mono-
chromatic laser source. As a result of collisions within the vapor the

velocities of the selected atoms relax back towards a Maxwellian distri-

3




pution. For experiments done in the time domain, one monitors this re-

laxation as a function of time [5].
tion occurs on a time scale determined by an effective lifetime of the

In steady-state experiments, relaxa-

velocity-selected atoms, and one measures a velocity distribution corres-
ponding to relaxation over thig time interval [6]. Since the total velo-
city profile is monitored, considerably more information about collisions
is available than from simple line width and shift measurements.

The physical quantity of interest in CLS experiments is the colli-
sion kernel K(G‘*:),giving the probability density (i- velocity space)
per unit time that collisions change the velocity of an atom or molecule
from V' to V. There have been several experiments in which the collision
kernel has been determined [5], [6]. For theoretical evaluations of the
kernel, it is invariably assumed that the velocity-tagged molecule under-
goes a collision with perturbers whose velocity distribution is Maxwellian.
Since the perturber distribution is assumed to be Maxwellian, one arrives
at a linear transport equation for the "active-atom”" distribution function.
The collision kernel can be expressed as a single integral over the colli-
sion scattering angle {7]. Calculations of kernels assuming either clas-
sical or quantum-mechanical scattering have been carried out for a number
of intermolecular potentials [6], [7].

Relationship between TT and CLS

(0)

In lowest order approximation, the coefficient of diffusion D12 for

a two-component gas is given by

oy 5T 1 3 k5T 1
D12 * m T = 2m 5 = (1a)
N“r“(lo) N[y Cylyy
12

T S G (1b)

16 wu (1,1
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where k.B is Boltzmann's constant, m is the active-atom mass, N is the
total molecular density, u, is the most probable active-atom - perturber

relative speed, T is the absolute temperature 0(18) is an effective
12

cross section defined by Eggermont et al [4], [31,31]12 is a square-

bracket integral defined by Chapman and Cowling {3], u is the active-atom -
(1,3)
perturber reduced mass and le is a collision integral defined by (3]
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where 2 and s are integers, x(b,y) is the scattering angle in the center-
of-mass frame, and b is the collision impact parameter.
It is important to note that Eq. (1b) follows from Eq. (la) when ex-
plicit use is made of the relationship
%% = gzgjr-' %% s (3)
where do/dQ is the differential scattering cross section for active-atom -

perturber scattering. If one were to use a phenomenological differential

scattering cross section (not derivable from an intermolecular potential),
then Eq.(1b) would no longer be valid. Of course, the difference between
Eqs. (la) and (1b), in that case, would be a measure of the suitability
of the phenomenological cross section which was assumed. I shall return
to this point below.

Using the definition of the effective cross sections and the collision
kernel, the following relationship between 0(10) and the collision
kernel K(;'*:) was derived in I: N

:Tpo(;g) = - 3—21— S AV W@ KRG [ . (4)
12 uu
Similar equations relating other o(i §,)12 to integrals of K(;ﬂ+;) are
given in I. Equations (1) and (4) imply that any fit of laser line shapes
using a specific kernel should be constrained by available (experimental or
theoretical) diffusion data. In this way the number of free parameters
used in fitting the lines can be reduced to a minimum [6].

Equation (4) can be evaluated for a number of collision kernels

K(¢'*§). For a hard-sphere kernel (derivable from a hard sphere inter-

wolecular potential), one finds Npurd(ig) = (4/3)(u/m)THS, where
12

FHS is the collision rate and Np is the perturber density. For the phenom-
enological Keilson-Storer kernel [9], given by

r > >2,2
>, > _ KS§ =(v-av') /w
Kgs (V') = (ra2y372 © (3)

with

2 (6)

w = (1 - az) uz,
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where 0 s a <1 and u is the most probable active-atom speed, one finds

N u 0(10) = [ (1 -a). Finally for a "difference-kernel" defined
pr 10 12 KS
by
2
- AT SRR (A DL Y
ay - 2,3/2 (7)
[n(8u)”]
one finds o(lg) = 0. The fact that o(;g) = 0 for a difference
12 3 12

kernel reflects the fact that <v> = 0 for distribution functions governed
by such a kernel (detailed balance is violated).

A method for providing a consistency check for phenomenological colli-
sion kernels was given in I. A second method for relating the collision
kernels to the collision integrals was derived. Since this method in-
volves the collision integrals rather than the effective cross sections,
it is strictly valid for kernels derivable from an intermolecular potential.
By calculating the collision integrals using both methods, one has an im-
plicit test of the validity of the chosen kernel. For collision kernels
derivable from an intermolecular potential, the collision integrals
evaluated by both methods must be identical. Differences between the
collision integrals which arise when the two methods are applied to a

phenomenological kernel can serve as a test of the validity of the use of

such a kernel.

The two methods give the same value for Q{;’l) for any kernel that
satisfies detailed balance. Since the Keilson-Storer kernel does satisfy
detailed balance, this result serves as a justification for using it to
describe diffusion. For the Keilson-Storer kernel, the two methods give
the same rather complicated functional form for Qig’z), but with an
amplitude that differs by about 10%. I do not understand the implicationms,
if any, of this result. For the Keilson-Storer kernel, the two methods
lead to a different functional form for Qi;’Z); however, the two ex-
pressions differ by only 6% to 207 when the value of a in Eq. (6) is
suitably chosen. For the difference kernel, the collision integrals vanish
by the first method and are non-vanishing (but small) by the second. This
result indicates the fundamental problems which can arise when kernels are
chosen which do not obey detailed balance.

Viscosity and Thermal Conductivity

The coefficients of viscosity and thermal conductivity for a gas mix-

ture are rather complicated [2]. For a one-component gas, the lowest order

)

approximation to the viscosity n and thermal conductivity are given




by [2] n(m ) —_E 1 s kBT 1 (8a) : t
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The lack of subscripts on ¢ and [*°,*+] imply that these quantities are
are evaluated for a one-component gas.

The relations derived in I are not sufficient for an evaluation of
these equations. What is needed is an analogous set of relations for a

tranfer kernel, in which one measures the probability density that a

collision transfers the velocity of an active atom v to a final per-
turber velocity v. Such terms are related to square bracket integrals
[3] of the form [f(El), f(Eé)]lZ’ where £ is some arbitrary function.

If this analogous set of equations is derived and added to the first set,
then a comparison with Eqs. (8) and (9) can be made.

Paths for Continued Research

Since limited research has been dedicated to the specific goal of
uniting laser spectroscopy and transport theory, it would seem to me
that the choices for continued research in this area are virtually un-
limited. Along the lines of I, one could complete the transfer-kernel
calculation described above. It is also possible to introduce transport
coefficients for atomic electronic-state coherence, state-changing colli-
sions, magnetic-state coherence, etc. One could then develop a series of
relations between these somewhat unconventional transport coefficients
and the corresponding collisiom kernels. From the efperimental side, one
could use lasers to create localized deviations from equili%rium and then
probe the relaxation back to equilibrium. In.patticular, one could pro-
duce a <v> # 0 for a sample and see if there’are deviations from an ég-
ponential decay law for <3(t)>., The use of lasers to significantly
mobilize atoms and givé them somé’net mass flow has already been elegantly

demonstrated in the ”optic;i piston [10].°

7
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We report on an experimental investigation of the collision kernels governing the effects of
velocity-changing collisions, fine-structure-changing collisions, and their interplay, for Na-noble-
gas pairs. The velocity distributions in the two Na excited-state fine-structure levels and in the Na
ground-state hyperfine levels have been measured in the presence of a pump laser which produces
velocity-selective excitation. For interpretation of these experiments we use a rate-equation model
developed in the context of light-induced drift: the velocity-changing collisions are accounted for
by a composite Keilson-Storer kernel describing large-angle and small-angle collisions and the
fine-structure-changing collisions are treated in the sudden limit. The model is valid for arbitrarily
high pump laser intensities and uses only a single adjustable parameter characterizing the small-
angle scattering. It is found that the theory describes the experimental velocity distributions in all
four Na levels over a wide range of experimental parameters for each Na-noble-gas pair. The
relevance of the collision kernels deduced in the present work is discussed in the context of nght-

induced drift.

I. INTRODUCTION

Recent experiments' "% on light-induced drift (LID)
have necessitated a closer study of collision kernels of
Na-noble-gas systems. The phenomenon of LID can be
described in terms of the level-dependent collisional in-
teraction between optically active atoms and a buffer
gas. Specifically, the difference between the active atom
ground-state and excited-state collisional interaction
with the buffer-gas atoms is the source for LID. A
description of LID for Na in a noble-gas background re-
quires knowledge about the collision kernels’ '* associ-
ated with all relevant energy levels of the Na atom.
When the pump laser is tuned to the 3s — 3p transition,
the two ground-state hyperfine levels (3s S, F=12)
and the two excited-state fine-structure levels (3p 2P, ,,
3p 2P, ,,) are populated by the combined action of the
pump laser, spontaneous decay, and fine-structure-
changing collisions. Therefore, in this paper we obtain
the kernels for velocity-changing collisions (VCC) and
fine-structure-changing collisions (FSC) of Na-noble-gas
pairs.

We have directly measured the pump-laser-induced
deformations of the velocity distributions in these four
Na levels. Normally, in LID, one measures only trans-
port effects related to the deformation of the total distri-
bution function. By measuring the velocity distributions
in all four relevant levels, we obtain information about
the ground-state and the excited-state collision kernels
which, in turn, can serve as input for a calculation of the
drift velocity in LID.® We have measured the single-
level distribution functions by means of a separate probe
laser, tuned near the Na 3p —4d transition for excited-

36

state measurements and tuned near the Na 3s —3p tran-
sition for ground-state measurements.

Previous work on collision kernels for Na-noble-gas
mixtures has not been done in the context of LID and
has focused on the collision kernel in a single level. The
ground-state collision kernel for Na-Ne has been mea-
sured by Aminoff et al.,'* but ground-state data for oth-
er Na-noble-gas mixtures are lacking. Liao et al.'* have
measured the kernel for velocity-changing collisions in a
single excited-state fine-structure level for all Na—noble-
gas mixtures, neglecting, however, the effect of fine-
structure-changing collisions.

A large body of experimental'®> and theoretical
work'*~!® has been devoted to the study of fine-
structure-mixing collisions. Historically, these fine-
structure-changing collisions have first been observed as
a sensitized fluorescence signal when one of the fine-
structure states of an alkali-metal atom was excited.
Since then, the experimental work can be subdivided
into gas-cell and molecular-beam experiments.

Most gas-cell experiments'® yield velocity-averaged
cross sections for (i) transfer of population, orientation,
and alignment between the two fine-structure states of an
alkali-metal atom and (ii) decay of orientation or align-
ment within one such state. As an exception, Apt
et al.">® obtained the precollision velocity dependence
of such mixing cross sections in the gas phase by
measuring the transfer fluorescence as a function of laser
detuning; however, the information that could be ob-
tained was rather restricted since only one component of
the alkali atom velocity distribution before the collision
could be Doppler selected and the velocity distribution
after the collision could not be analyzed.

5251 © 1987 The American Physical Society
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Molecular-beam experiments are intrinsically more
suitable to determine velocity-dependent data. The
differential  scattering cross section for excited
alkali-noble-gas collisions has been measured by many
groups.’' ~#* In these experiments, the velocity and the
fine-structure level before the collision are selected but
the final fine-structure state is usually not resolved, re-
sulting in a final-state-averaged differential scattering
cross section. As an exception, Phillips er al.*® were
able to analyze also the fine-structure state after the col-
lision. Finally, the initial velocity dependence of the to-
tal mixing cross section has been determined in a
molecular-beam experiment;?’-*® however, the final-state
velocity distribution or scattering angle was not ana-
lyzed.

In the experiments which are discussed in this work,
we measure elastic and inelastic collision kernels for
atomic state populations. For the Na—noble-gas system
under investigation, such kernels can be defined as the
probability density per unit time that an alkali-metal
atom is scattered from v’ to v while undergoing a transi-
tion from state |J',m;) to |J,m,) as a result of col-
lisions with buffer-gas atoms which are assumed to be in
thermal equilibrium. We consider, as is usual in laser
spectroscopy, a one-dimensional kernel corresponding to
the probability that the component of the atomic veloci-
ty along the laser beam is changed. Furthermore, in this
work, only the total population of a J level will be con-
sidered, averaging out the m; dependence of the kernel.
The collision kernel is thus a quantity which is, in a
sense, intermediate between the velocity-averaged
transfer cross section and the final-state resolved
differential scattering cross section.

We emphasize that the main objective of our work is
to obtain a complete set of collision kernels for all
Na-~noble-gas pairs, the Na atom being in the 3s ground
state or in the 3p excited state, for (future) use in LID
theory.® Therefore, we have chosen relatively simple
Keilson-Storer model kernels with only a few free pa-
rameters®?’ the latter will be fixed by the experiments

J. E. M. HAVERKORT, J. P. WOERDMAN, AND P. R. BERMAN

Na-~noble-gas pairs one could obtain better agreement
between the calculated and the measured velocity distri-
butions reported in this work by using more elaborate
model kernels (i.e., more free parameters) or by using
numerical instead of analytical kernels. Such refinement
is of limited use in the context of LID and has therefore
not been pursuaded; however, our experimental data are
presented in such a way that a more refined analysis
remains possible.

The structure of this work is as follows. In Sec. II, we
present the experimental setup for measuring the veloci-
ty distributions in all four relevant Na levels, and some
typical experimental results are shown. In Sec. III we
briefly review the four-level rate-equation model previ-
ously developed® and extend it to five levels in order to
be able to calculate the experimental probe spectra.
Model kernels for velocity and fine-structure-changing
collisions are specified in Sec. IV. In Sec. V a compar-
ison is made between the experimental probe spectra and
theoretical spectra; the latter have been obtained using
the rate-equation model of Sec. III with the kernels of
Sec. IV. In Sec. VI we give conclusions also as to the
relevance of the present work for LID.

II. EXPERIMENTAL SETUP AND RESULTS

In this section the experimental setup for the measure-
ment of the velocity distributions in all four relevant Na
levels is described and some typical results are presented.

As mentioned above, we will consider the five-level
scheme shown in Fig. 1(a), in which levels 1 and 2 are
the 2S,,,, F=1 and F =2 ground levels, respectively,
and levels O and 3 are the two 3p fine-structure levels
2P, ,, and ’P,,,. Level 0 is defined as the level which is
directly populated by the pump laser and level 3 is the
nonresonant fine-structure level; in our notation, levels
’P,,, and *P, , are labeled “0” and “3,” respectively, for
D, excitation; the labels are interchanged for D, excita-
tion. The 4d 2D, , level is used as the upper level of the
probe laser transition and is denoted as level 4. The

reported in this paper. In principle, for most pump laser, which is responsible for LID, is always
2
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FIG. 1. (a) shows the five-level approximation of the actual Na level scheme. We take into account both ground-state hyperfine
levels, both fine-structure levels of the 3p excited state (neglecting the 3p hyperfine structure), and the 4d level. The 3s ground-state
hyperfine splitting is 1.77 GHz and the 3p fine-structure splitting is 510 GHz. (b), (¢}, and (d) show the pump and probe laser fre-
quencies for measurements of the velocity distributions of the resonant fine-structure level, the nonresonant fine-structure level, and
the ground-state levels, respectively. Note that the level numbering is chosen in such 2 way that level 0 is always the resonant 3p

level.
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tuned into the red wing of the Doppler-broadened 2—0
transition, about 1 GHz below line center, but it should
be noted that it also weakly excites atoms in the Lorentz
tail of the 1—0 transition; in fact, this weak excitation
turns out to be of prime importance for LID.?

The velocity distribution in the resonant fine-structure
level, level 0, is recorded [Fig. 1(b)] by means of a probe
laser which is tuned to the 0—4 transition, whereas the
velocity distribution in the nonresonant fine-structure
level, level 3, can be recorded when the probe laser is
tuned tu the 3 —4 transition [Fig. 1(¢)]. We always use
the 3p P, ,, as the lower level for the probe laser transi-
tion, because, in this case, complications due to the 4d
fine-structure splitting are absent since the 3P1/3 —»205/3
transition is forbidden. Consequently, when we want to
switch from resonant to nonresonant fine-structure-level
measurements [see Figs. 1(b) and 1(c)], we tune the pump
laser from the D, to the D, line, while keeping the
probe laser frequency near the 3p *P, , —4d °D, , tran-
sition. In the scheme shown in Fig. 1(b} the two laser-
driven transitions share a common level; the resulting
complications in interpreting the probe laser spectra are
accounted for in Sec. I1I.

We have also measured the velocity distributions in
the two ground-state levels using a probe laser on the
35 —3p trensition [Fig. U(d)]. In this case, in order to
avoid the complications associated with two laser-driven
transitions sharing a common upper level, we have
chosen to tune the pump laser to the D, line and the
probe laser to the D, line.

A sketch of the spatial overlap of pump and probe
beams is shown in Fig. 2. A pump laser with beam di-
ameter d, much smaller than the diameter D of the cell,
induces LID. The relevant velocity distributions can be
recorded by means of a probe laser with diameter d’
which is running either copropagating, for ground-state
measurements, or counterpropagating, for excited-state
measurements, with respect to the pump laser beam
td"<d). Since D >>d. wall interactions which tend to
complicate the transport experiments of LID (Refs. 3
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FIG. 2. The Na vapor cell and the geometry of the pump
laser beam, which produces LID and the probe laser beams
which monitor the velocity distributions responsible for LID.
For the excited-state measurements we use a counterpropagat-
ing probe beam and for the ground-state measurements a
copropagating probe beam. The ball valve is used to admit
buffer gas into the cell. The cell is maintained at © ~mperature
of 393 K by an oven (not shown), keeping the Na density at
10" em

and 4) are absent.

The experimental setup in which the ground-state
spectra and excited-state spectra have been measured is
shown in Figs. 3 and 4, respectively. We use two Rho-
damine 6G dye lasers. The pump laser is a single-
frequency ring dye laser (Spectra Physics 380D) which is
tuned near 589.0 nm for D, excitation and near 589.6
nm for D, excitation. The probe laser is a single-
frequency standing-wave dye laser (Coherent CR-599-
21), tuned near 589.6 nm for ground-state measurements,
and near 568.2 nm for excited-state measurements. The
intensity of the probe laser beam is actively stabilized us-
ing an electro-optic modulator. Both lasers are frequen-
cy stabilized and have a linewidth of =1 MHz. The
probe spectra have been digitized using 50 frequency
points for excited-state measurements and 200 frequency
points for ground-state measurements. The beam
profiles inside the Na vapor cell are approximately
Gaussian [d =0.22 cm, d'~0.15 c¢m full width at half
maximum (FWHM)]; they are defined by means of spa-
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FIG. 3. The experimental setup for excited-state measure-
ments. The excited-state spectra are measured by using a fixed
pump laser frequency and by scanning the probe laser freguen-
¢y over the velocity distribution of the level in study, using a
counterpropagating geometry.  The 330-nm cascade fluores-
cence is separated from the strong $89-nm fluorescence by a
filter and photon counted by a photomultipher tube (PN The
frequency calibration setup is basically similar 1o the mamn set-
up, except that both copropagating and counterpropagating
geometries are used. The Lamb-dip setup for the calibranon of
the pump laser frequency is not shown.
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FIG. 4. The experimental setup for ground-state measure-
ments. The ground-state spectra are measured by using a fixed
pump laser frequency and scanning the probe laser frequency
over the ground-state velocity distributions. The transmitted
probe laser beam is separated from the strong pump laser beam
using an analyzer in combination with a monochromator and is
detected by a photodiode. By chopping the pump laser beam,
the pump laser-induced deviation from the ground-state equi-
librium distributions is obtained. Not shown are two separate
Lamb-dip setups which are used to calibrate the pump and the
probe laser frequencies.

tial filters.

The Na-noble-gas mixture is contained in a cylindri-
cal Pyrex cell with an inner diameter of D =1 ¢cm and a
length of 3 cm (Fig. 2). The cell is connected to a
second Pyrex reservoir containing liquid Na. The Na
reservoir is connected, via a ball valve, with a larger
reservoir at room temperature containing the buffer gas.
By controlling the temperature of the Na reservoir, the
Na density in the cell is kept at 10'° atoms/cm’, result-
ing in a maximum light absorption of =30% at the
center of the 2—0 (D,) transition. At this Na density,
the effects of Na-Na collisions were negligible as com-
pared to the effects of Na—noble-gas collisions. The cell
is heated by a quartz tube coated with a transparent
semiconducting tin-oxide layer which surrounds the cell
and acts as an oven.’® The noble-gas pressure is moni-
tored by means of a Barocell capacitance manometer.

The experimental setup for the excited-state measure-
ments is shown in Fig. 3. We use a reference setup (Fig.
3) in order to calibrate the probe laser frequency. For
the excited-state measurements, the probe laser frequen-
cy is monitored by measuring 3s —3p —4d two-step cx-
citation spectra. In contrast to the main setup, where
only counterpropagating beams are used, both the
copropagating and counterpropagating geometries are
used in the reference setup. By adding a little amount of
buffer gas in the latter frequency calibration cell, the
nonresonant fine-structure level is populated by fine-
structure-changing collisions. Consequently, both the
resonant and the nonresonant excited-state calibration
spectra could be measured. During the ground-state
measurements, the probe laser frequency was monitored
by recording a Lamb-dip spectrum in the reference set-
up, simultaneously with each ground-state spectrum in
the main setup.

The excited-state spectra are recorded by keeping the
pump laser frequency fixed and by scanning the probe

laser through the velocity distribution of the level under
study, using the transitions shown in Figs. 1(b) and l(c)
and monitoring the ultraviolet 4p — 3s fluorescence (330
nm).

The experimental setup for the ground-state measure-
ments is shown in Fig. 4. The ground-state spectra are
recorded by scanning the probe laser through the veloci-
ty distribution of the hyperfine level under study, using
the 1 -3 or 2—»3 transition, while keeping the pump
laser frequency fixed. When the probe laser is tuned to
the 1—3 transition, the copropagating and counterpro-
pagating spectra are equivalent. For experimental con-
venience, we used the copropagating geometry. We
measured the probe laser absorption instead of the probe
laser-induced fluorescence, which, in this case, cannot be
easily separated from the strong pump laser-induced
fluorescence. By choosing mutually orthogonal laser po-
larizations, the probe beam could be conveniently
separated from the much stronger pump beam by means
of an analyzer in combination with a monochromator
with an instrumental width of 0.2 nm, tuned to the 1 —3
transition [see Fig. 1{(d)]. By modulating the pump laser
intensity and demodulating the probe absorption syn-
chronously, we obtain a spectrum proportional to the
deviation of the ground-state distribution function from
equilibrium. We refer to such a spectrum as a ground-
state spectrum. In recording these ground-state spectra,
we had to avoid the spurious effect of incomplete
hyperfine relaxation at the cell wall;*' this has the same
effect as strong velocity-changing collisions. In the
present case, this spurious contribution could be
suppressed, by choosing the pump beam diameter d
much smaller than the cell diameter D.

In Fig. 5(a), as an example, the counterpropagating
excited-state spectrum for the resonant fine-structure
level is presented for a buffer-gas pressure of 6 Torr of
Ne (peak 1). In recording the resonant excited-state
spectrum, complications due to the 3p hyperfine struc-
ture could be eliminated’> by probing the ?*P,.
(F=1,2)—2D,,, transition and by using counterpro-

T T T T

)

L ]
|

Fiuorescence
Fluorescence —— e

Vorobe!GHZ) ——= VerobelOHZ) ———=

FIG. 5. Resonant (a) and nonresonant (b) excited-state spec-
tra as a function of probe laser detuning at a buffer-gas pres-
sure of 6-Torr argon, a pump laser intensity of 24 mW/cm-,
and a probe laser intensity of 0.2 mW/cm®, During each mea-
surement, the pump laser frequency was fixed at a detuning of
0.8 GHz below resonance of the 2—0 transition [see Figs. 1(b)
and (c)]. The dashed curve is for frequency calibration. The
labels 1-4 are explained in the tex!.
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pagating pump and probe beams; in this geometry, the
probe laser is effectively tuned to a two-level transition
(neglecting the residual hyperfine splitting of 7 MHz).
Using the frequency calibration trace [see Fig. 5(a)], the
probe detuning corresponding to a zero Doppler detun-
ing, and thus to a zero axial velocity (v, =0), can be
easily obtained. For the ’P,,, F =1 (2) level, this de-
tuning corresponds to the position midway between the
peaks 2 and 3 (4).

Figure 5(b) shows a similar excited-state spectrum for
the nonresonant fine-structure level. The features 2 and
3 in the frequency calibration trace are again due to
counterpropagating and copropagating beams, respec-
tively. The full curve is the nonresonant excited-state
spectrum at a buffer-gas pressure of 6-Torr Ne; this cor-
responds to the same experimental conditions as the full
curve in Fig. 5(a). By comparing the resonant and the
nonresonant spectra, it follows that in this case fine-
structure-changing collisions appreciably thermalize the
velocity distributions.

We present two typical ground-state spectra in Figs.
6(a) and 6(b), which correspond to a buffer-gas pressure
of 0- and 50-mTorr He, respectively. The two dips la-
beled as 1, correspond to the Bennett hole in the F =2
ground state. The two peaks, labeled by 2, correspond
to the “Bennett peak™ in the F =1 ground level which is
due to optical hyperfine pumping from levels 2 to 1. In
these copropagating spectra, the *P, , hyperfine splitting
(Av=192 MH2) is resolved but the *P; , hyperfine split-
tings (Av =15, 34, 60 MHz2) are not resolved.

III. CALCULATION OF THE PROBE SPECTRA

In this section we calculate the two-step excitation
spectra produced by an arbitrarily strong fixed-frequency
pump laser tuned to the 3s —3p transition and a weak
probe laser tuned across the 3p—4d transition for
excited-state measurements or the 3s -+ 3p transition for
ground-state measurements. We extend the four-level
model levels 0-3) discussed in the context of LID (Ref.
8) by taking into account a fifth level (level 4, see Fig. 1).
The probe transition to this fifth level allows one to

AbSOrption —— e

L 1 1
0 1 2 3 L S

VerobeOHZ) ——a

Verobe!OHZ) — e

FIG. 6. The ground-state spectra without buffer gas (a) and
with 50-mTorr helium (b) as a function of probe laser detuning,
at a pump laser intensity of 26 mW/cm? and a probe laser in-
tensity of 0.2 mW/cm?. For frequency calibration, a 3s —3p
Lamb-dip absorption spectrum has been added (dashed curve).

monitor the velocity distributions of the excited-state
levels 0 and 3. The specification of the collision terms
which are introduced in the model to describe velocity-
changing and fine-structure-changing collisions will be
deferred to Sec. IV. In Sec. V we compare the calculat-
ed spectra with our experimental spectra.

Following the perturbation approach introduced by
Berman et al.,*® we first calculate the velocity distribu-
tions in levels 0-3 in the presence of the strong pump
laser, the weak probe laser beam being absent. We gen-
eralize the approach of Berman et al. in the sense that
we allow for the Na ground-state hyperfine structure and
that we take into account an improved description of the
fine-structure-changing collisions (see Sec. IV). The ve-
locity distributions f,(v) in levels 0~3 are governed by a
set of rate equations which is valid for arbitrarily high
pump laser intensity. This set of rate equations reads®

af0 8 #)
ot =0=Ry fl_g;fo +R fz—gfo
—Aofo+Lfo+Lonfo+LyS
+Tlngd"Wivi—f,1, (3.1a)
af g .
at =0=—Ry |f1——Jo |+andofo+ay 4:f,
8o
L fi+0 n\Wivi—f,], (3.1b)
af, 8>
at‘:O:_RJ” fi=—fo tapdyfy+and.f,
8o
+ LSy + T [ny Wivi-f,], 3.1¢)
A _
o S0= - A s+ LS+ LS

+T P Wiv)—f,]. (3.1d)

Here A, is the spontaneous decay rate from level 4, g, is
the degeneracy factor of level i, a,; is the branching ratio
from level i —j, £ is a collision operator for velocity-
changing collisions within level J, L}, L, are operators
describing gain and loss (i<sj) occurring in fine-
structure-changing collisions. The tra.sit relaxation rate
') couples the volume within the laser beam with an
infinite bath of Na atoms having equilibrium level popu-
lations 7% and equilibrium Maxwellian velocity distri-
butions W (v). Explicitly [, is given by®

(2.405)°D,
R 2

1
1+6.87/R

= (3.2)

where D is the diffusion coefficient,™ 7 is the mean-free
path and R is the radius of the laser beam. The
velocity-selective excitation rates R, are defined as
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] l"? the sense that we allow for the hyperfine splitting in the
Rip=140= -——————2 , (3.3a) ground state. Moreover, Berman et al. only took into
I, Th+(8,0—kv,) account velocity-changing collisions with velocity
fiw, A changes larger than those corresponding to the width of
I, = o (3.3b)  a Bennett hole. This additional assumption, which was
H

Here I, is the homogeneous linewidth, A is the detun-
ing from line center, I, is the saturation intensity for a
two-level system without velocity-changing collisions
and oy is the homogeneous absorption cross section.
The solution of the set of rate equations has been calcu-
lated numerically® and is denoted as f;*(v,). The two-
step fluorescence excitation spectrum can be calculated
from the solution f{*'(,) of the set of rate equations. It
consists of three contributions: a ‘‘stepwise” (SW) con-
tribution proportional to the population in level 0 and
two “two-quantum” (TQ) contributions proportional to
the 1-0 and 2-0 coherences, respectively.”* The total
spectrum is®

I=I"41T, 411, , (3.42)
2
V= S oaroRe [ AP L) (3.4b)
2
179 = 208 Re [ o, 11110,/ 10,)]

ST,
X Liglv, )Lilv, )L {v,), (3.4¢)

2(00")
TQ @Yy pis
9, = P rTR fdv Ir5, 5 w,)]

X Lo, )L slv, )L 35(0, ), (3.4d)

where ,€)’ are the Rabi frequencies corresponding to
the pump laser and the probe laser fields, respectively.
The Lorentzians Ly(v,),Ly(v,) and the somewhat
more complex line-shape function L (v, } are defined as

Cyp+id
Liglo,)= ——0 (3.5a)
Fo+5%0
I 18
Lo, =——2 (3.5b)
r41+541
Ly +ib
Lig(v, )= . Ll =, (50
(rw+1840)(r,“+1841)+(1+a)ﬂ
S10=0pymp—(wg— ) —kv, , (3.5d)
841 =@ pymp + @probe — (Wg— @) —(k +€k' I, , (3.5¢)
B30 =y rone — W4 —wg)- €k’v, (3.5
C,+id
. Ui L (3.5g)
T4y,

The Lorentzians L5(v,) and Lj,(v,) have the same
functional form as Li(v,) and Ly (v,) with 8,,,8,, re-
placed by 8,9,8,,- Equations (3.4) and (3.5) are a gen-
eralization of the results obtained by Berman et al.** in

necessary in order to obtain analytical results, is not re-
quired in our numerical approach.

The nonresonant excited-state spectra involve probe
transitions which start from the nonresonant fine-
structure level and consequently do not involve any
two-quantum contributions since the two transitions do
not share a common level. In this case, the probe spec-
tra are simply convolutions of a Lorentzian with the ap-
propriate velocity distributions,

2 ot
I = dv
P47 44Ty f

r34
§4+(A34—kuz )?
(3.6)

Next, we address the ground-state probe spectra. The
copropagating spectrum in which the F =2 ground level
is common to pump and probe transitions agam contains
two-quantum contributions (¥ configuration®®). Since
the ground-state spectra associated with the F =1 and
F =2 levels essentially contain the same information
about the ground-state collision kernel, we decided to
analyze only the probe spectrum associated with the
F =1 level, the pump transition always starting from the
F =2 level. The probe spectrum associated with this
nonresonant ground-state velocity distribution is

2(9 )2 I
I d (4) -
3T f ST 2 (A —kv, )

(3.7

Finally, in order to compare the theory with experi-
mental spectra, the effects of the 2P, and °P,,.
hyperfine structure must be accounted for in the non-
resonant excited-state spectra and in the ground-state
spectra; for the resonant excited-state spectrum with
counterpropagating beams, such effects are minimal due
to Doppler cancellation. The probe spectra calculated
trom Egs. (3.6) and (3.7) are ad hoc convolved with the
hyperfine splitting of the 3p level in order to obtain the
final theoretical expression for comparison with experi-
ment.

IV. KERNELS FOR
FINE-STRUCTURE-CHANGING ( " LISIONS

In this section kernels which describe both the effects
of fine-structure-changing collisions and velocity-
changing collisions are presented. We start with a col-
lision model for an active atom with degenerate levels,
described by an orbital angular momentum L0 only,
the so called L-base model. During a collision of a Na
atom with a noble-gas atom, only the angular momen-
tum L of the Na atom is affected, while the electron spin
S and the nuclear spin 1 can be considered as frozen,
provided that the collisions occur at a short enough time
scale so that I and S cannot couple with L.***" In this
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limit, the so-called “sudden limit,” all physics is con-
tained in the L-base collision model. Subsequently, we
consider collisions in the J base in which the levels are
split due to the spin-orbit interaction. Assuming that
the collisions are sudden, the collisional evolution in the
J base can be related to the collisional evolution in the L
base. The kernels for fine-structure-changing collisions
directly follow from this collision model. Finally, the
validity of the sudden approximation is discussed briefly.

In the L-base description, collisions affect not only the
velocity of an atom, but also its magnetic quantum num-
ber m; . Both effects can be incorporated in a quantum-
mechanical version of the Boltzmann equation®~%
which describes the collisional evolution of the density-
matrix clements p,..(r,v,t) of the active atoms due to
collisions with buffer-gas atoms. In general, one has to
specify (2L +1)* collision kernels in order to describe
the collisional decay and transfer of populations and
coherences within such a level. In order to simplify the
discussion, an isotropic distribution of the relative veloc-
ities of Na atoms and perturbers is assumed.*' In this
case, the collision operator becomes isotropic and only
couples multipole elements of equal rank k. The col-
lision operator in the L base can be written as

3 .
5 Po=Lx gV

=LK vy [ dv KRV —v) (v, 4.1)

where fp§(v) are the density-matrix elements in the irre-
ducible tensor notation;*? 'Y with K =0,1,2 are the
collisional relaxation rates in the L base for population,
orientation, and alignment, respectively; K ‘®'(v'—v) are
the associated collision kernels in the L base, and /£
the collision operators in the L base.

When the collisions are sudden, the collision model in
the J base can be obtained from that in the L base.
First, the time evolution of the density-matrix elements
in the J base Jp’,;' is related to that of their counterparts
in the L base Lp’é using vector coupling algebra.
Secondly, the time rate of change of the density-matrix
elements in the L base Lpg can be related to the
density-matrix elements “pf§ themselves using Eq. (4.1).
Finally, these elements Lpg can again be related with the
elements /p;f in the J base using vector coupling algebra.
Using this procedure, an equation describing the col-
lisional evolution of Jp’; in the J base is obtained in terms
of a collision model in the L base,

1
3, L Lokl L k|1 7k
-a?pq=1‘%m(2m+1)(2K—+—1)(2J+1)(2J+1) S Jlls m J,]lm s L
JJ ok o -
S8 I ‘—I‘"‘”pé(v)%—fK‘K’(v'—>v)1p2(v’)dv’J, 4.2)
—
where | | are 6-J symbols.*' In deriving Eq. (4.2) we  two parts: () an elastic collision rate T'®, giving the rate

neglected coherences between the two fine-structure
states since these states are not connected by any field.

Using Eq. (4.2), one can obtain rate equations govern-
ing the collisional evolution of the velocity distributions
in the "P,,, and °P,,, excited states of Na. For in-
stance, for population transfer (k =g =0, L =1, §=1)
we find

%fx a=Lyfia+ Ly L) at i), (43a)

a B
é;f"z =Ly fso+H Ly LW 2+ f52) 0 14.3D)

where f, is the velocity distribution function for level-J
population [f, =(2J + N'"*’p0] and £, L, are the col-
lision operators in the L base for total population and
orientation, respectively. The operator £, for alignment
in the L base does not appear in these equations, indicat-
ing that £, only influences the individual m; distribu-
tions, but not the total J-level population distributions.
Equations (4.3) also show that the difference (£ — £ ),
which depends on the difference between the population
and the orientation collision kernel, is responsible for the
fine-structure mixing.

The collision operators £, and £, can be split into

at which atoms are scattered out of a certain interval
v,v+dv and (ii) a gain term characterized by a kernel
which describes the transfer from the full velocity space
back into the same interval,

L()z-—l‘°'+fdv’l(‘°’(v’—*v) , (4.4a)
Li=-T"4 fdvK'iv vy, (4.4b)
in which "' is given by
ri= [ avKv-vis [ dvK v v, 4.5)

The equality in Eq. (4.5) represents the conservation of
total population in the L =1 level. As indicated by the
inequality in that equation, the velocity-integrated orien-
tation kernel is not conserved. Consequently, the total
(velocity-integrated) orientation decays to zero. a result
that is not surprising given the fact that, in general, col-
lisions destroy Zecman coherence.,

At this point the kernels K'" and K''' shouid be
specified in order to obtain expressions for the transfer
kernel and the relaxation kernel in the J base. We will
follow the common practice!™* ** by more or less arbi-
trarily subdividing the collisions into different categories,
depending on the range of the collisional intcraction.

—
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These categories can be linked to the shape of the one-
dimensional collision kernel which reflects the change of
the component of the velocity along the laser axis. As
shown by Gorlicki* in a numerical calculation of the
Ne*-Ne collision kernel based on a realistic potential,
the kernel consists of a strong narrow peak arising from
small-angle scattering owing to the long-range part of
the potential, that is, symmetric around the initial veloc-
ity component, and a broad tail arising from large-angle
scattering owing to short-range interactions. Also, Ho
and Chu,** who combined a semiclassical differential
cross section for small-angle scattering with a classical
Lennard-Jones differential cross section to describe
large-angle scattering, found excellent agreement with a
full quantum-mechanical calculation of the differential
scattering cross section, showing that a subdivision into
large-angle and small-angle scattering can be successful.

In addition to classical scattering as described above,
there will be a quantum-mechanical diffractive contribu-
tion to the scattering. However, since the diffractive
scattering does not contribute to magnetic state reorien-
tation in the L basis, as discussed by Keller and Le
Gouét* (and, consequently, provides no contribution to
fine-structure-changing collisions) and since diffractive
scattering for level populations corresponds to velocity
changes that are undetectable in our experiment, all
effects of diffractive scattering have been neglected in the
present work.

Here, the subdivision of the collisions into several
categories will be exploited to connect the different parts
of the kernel with different regimes of fine-structure mix-
ing. For small impact parameters, large-angle scattering
(LAS) occurs which mixes the fine-structure populations
completely; the large-angle scattering is described by a
Keilson-Storer kernel®?*%" K'AS(y'_,v) with a corre-
sponding rate I'"S(v). For larger values of the impact
parameter, small-angle scattering (SAS) occurs, also de-
scribed by a Keilson-Storer kernel K 5*5(v'—v) and rate
$AS(y). Since calculations based on a van der Waals in-
teraction have shown that all collisions corresponding to
classical scattering lead to nearly complete depolariza-
tion in the L basis,*>*? orientation cannot be preserved
for these LAS and SAS collisions. Consequently, we as-
sume that the orientation kernel vanishes. The resulting
L-base model has kernels and rates given by

KO = KLAS | KSAS (4.6a)
K'"=0, (4.6b)
re=plAs4rsas, (4.6c)

rLAs=de’KLAS(V—>V'), FSAS:de’KSAS(V——PV’) .
{4.6d)

It follows from Egs. (4.3) that the difference between
K'"v'>v) and K'®(v'—v) is responsible for fine-
structure mixing. Consequently, according to Egs. (4.6a)
and (4.6b), all collisions corresponding to classical
scattering angles contribute to fine-structure mixing.

When Egs. (4.5) and (4.6) are inserted into Eqgs. (4.4), we
find

’g?fl/2=—(rms+rms)f1/z
+4 [ VKNS VIl 2V 300
+§fdv'KSAS(v'—-v)[f,/z(v’H—fm(v’)] s
(4.7a)
%f}/z =~ (PS4 T%%)fy,
+2 [dVKYSY I (V) f35000]

+2 [AVKSASWV VLS VI f1,00)]
(4.7b)

At this point, the validity of the sudden approxima-
tion has to be discussed. Using the experimental values
of transfer and relaxation rates of the eight different
multipoles of Na in the 3p 2P multiplet, which have been
measured by Gay and Schneider,*® we can compare our
L-base model with experiment. Assuming that the sud-
den approximation is valid and using vector coupling
algebra, the multipole transfer and relaxation rates in
the J base can be related to the orientation relaxation
rate I'!" and the alignment relaxation rate I'?' in the L
base®?*#%3%  Using a van der Waals potential to de-
scribe the long-range part of the intermolecular poten-
tial, these latter two rates are related through
r'/r®=1.12.%»%" ysing this relation, all eight mul-
tipole rates can be expressed in terms of the orientation
relaxation rate "', For Na-He, the experimental mul-
tipole transfer and relaxation rates*® can indeed be de-
scribed by a single parameter I’ within 10%, showing
that the sudden approximation is valid for this case®®’.
However, when the noble gas is changed from He to Xe
the deviations due to the sudden approximation increase
monotonically®?. For Na-Xe, the sudden approxima-
tion clearly breaks down since the experimental transfer
and relaxation rates and the theoretical ones based on
' differ by a factor of 2. Thus, our analysis of the
Na-Xe results should be considered as less reliable.

The last point to be addressed is how to relate the four
adjustable parameters, the collision rates I'“AS, A5 and
the Keilson-Storer strength parameters aA5,a3S o the
interaction potentials. By using the hard-sphere value
for a'*S, which depends on the mass ratio of active
atom and perturber atom only,”? and experimental data
for I'®,*8 two adjustable parameters can be readily elim-
inated. A third adjustable parameter can be eliminated
by using the known value of the diffusion coefficient as is
discussed below. The only remaining adjustable parame-
ter &3S will be fit to the excited-state spectra in Sec. V.

For a composite kernel, the relation between the
diffusion coefficient and the collision rates and strength
parameters can be obtained by slightly generalizing our
previous results for a single kernel *®»>
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kT
mD!0}

where m is the Na mass. The left member of Eq. (4.8)
represents the diffusional collision rate. The question
remains as to how to relate the diffusion coefficient DS?,‘
in each fine-structure level to the diffusion coefficients
which can be calculated for the three excited-state
Na-noble-gas interatomic potentials, namely, the
A, A4°N,, and B?3,, potentials. Assuming
that the sudden limit is valid, the diffusion coefficient is
equal for both fine-structure levels and can be expressed
as

= (1 —tAS)[LAS | (] _oSAS)SAS | (4.8)

DY)=1pP) 4+ D[V, 4.9)
0 S St T T 1
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FIG. 7. Resonant (a) and nonresonant (b) excited-state spec-
tra as a function of probe laser detuning (v, =Aw/k with
respect to the 0-+4 or 34 transition) for 3.1-Torr helium.
Both spectra have been scaled to the same peak height. The
solid curve is the experimental spectrum and the dashed curve
represents the model calculation. Parameters are as follows:
a’*5=0.99; pump laser intensity 280 mW/cm?; pump laser de-
tuning 0.8 GHz below line center of the 3s, F =2-—3p transi-
tion; pump laser beam diameter 2.2 mm; probe laser intensity
0.2 mW/cm?; probe laser beam diameter 1.5 mm; temperature
393 K; and Na density 10+"%cm -2,

where the diffusion coefficients DE(,)] and D&Ol corre-
sponding to the A ’I1 and B 23 potentials have been cal-
culated previously.* In this case the validity of the sud-
den limit is warranted, even in the case of a heavy noble
gas as collision partner, if we restrict ourselves to large-
angle collisions which determine the diffusion coefficient.
This can be deduced®*’ by comparison with the quantum
calculations of Pascale and Olson® for Na-Kr and Na-
Xe.

V. COMPARISON OF EXPERIMENT
WITH THEORY

A. Excited-state measurements

Experimental excited-state probe spectra for both
fine-structure levels have been recorded for all noble
gases and for various noble-gas pressures and pump laser
intensities. In Figs. 7—11 these experimental spectra are
presented together with calculated spectra. We have

T T T L
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FIG. 8. Resonant (a) and nonresonant (b) excited-state spec-
tra for Na-Ne for a®*%=0.975, 2.6-Torr neon, and pump inten-
sity 4.77 mW/cm?. All other parameters are identical to Fig.
7. The peak height of the resonant spectrum has been scaled
to be a factor 8.79 larger than the peak height of the non-
resonant spectrum.
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FIG. 9. Resonant (a) and nonresonant (b) excited-state spec-
tra for Na-Ar for a®*5=0.975, 9.8-Torr argon, and pump in-
tensity 19 mW/cm?®. All other parameters are identical to Fig.
7.

chosen to present the spectra as a function of the veloci-
ty component of the resonant atoms along the laser
beam v,. The resonant velocity is related to the probe
laser detuning by v, =Aw/k, where Aw denotes the de-
tuning from resonance on the 0-—4 transition. The cal-
culated spectra have been obtained by introducing the
excited-state kernels (Egs. 4.7) into the set of rate equa-
tions (Egs. 3.1). By solving these rate equations numeri-
cally,” one can obtain the excited-state spectra. As dis-
cussed in Sec. IV, the resulting excited-state spectra con-
tain a single adjustable parameter, the Keilson-Storer
strength parameter a®*3 characterizing small-angle col-
lisions.

An example of the sensitivity of the spectrum to the
precise value of a®*S is presented in Fig. 12. The calcu-
lated nonresonant spectrum is shown here at 0.5-Torr
krypton and a pump laser intensity of 36 mW/cm? for
a®*5=0.95, 0.975, and 1.0. It can be seen that the
widths of the two peaks (which are due to the P,
hyperfine splitting) around v, =500 m/s are very sensi-
tive to small changes in a5, When >*% =1, the small-
angle kernel only mixes the two fine-structure levels, but
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FIG. 10. Resonant (a) and nonresonant (b) excited-state
spectra for Na-Kr for a®*%=0.975, 0.5-Torr krypton, and
pump intensity 36 mW/cm?. All other parameters are identi-
cal to Fig. 7. The peak height of the resonant spectrum has
been scaled to be a factor 9.94 larger than the peak height of
the nonresonant spectrum.

does not affect the velocities. When a®*® is slightly
different from unity, the small-angle kernel significantly
broadens the Lorentzian peaks. In Fig. 10(b), the calcu-
lated spectrum for a3*5=0.975 is compared with the ex-
perimental spectrum, showing that a>*%=0.975 yields
approximately the experimentally observed amount of
broadening for a pressure of 0.5-Torr krypton. By com-
paring Fig. 12 with Fig. 10(b), it is obvious that the
choice a®%=1, which would correspond to neglecting
the small-angle kernel, does not describe the experimen-
tal data. From fitting procedures as described above, we
find that the best value of @®*" for all Na-noble-gas
mixtures is 0.975 (+0.01), except for Na-He where it is
0.99 (+0.005). Although both values are close to unity,
the average velocity change per small-angle collision,
Au =0[1—(a®5)*)"" is still appreciable. We find
Au=0.22F and Au =0.14F for *=0.975 and
a®*$=0.99, respectively, which at 1 Torr buffer-gas
pressure corresponds to a Doppler-frequency shift of ap-
proximately three times the homogenecous linewidth of
the stepwise contribution to the spectrum. This is a
theoretical confirmation that the small-angle kernel can-
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FIG. 11. Resonant (a) and nonresonant (b) excited-state
spectra for Na-Xe for a®*=0.975, 2.6-Torr xenon, and pump
intensity 1000 mW/cm?. All other parameters are identical to
Fig. 7. Both spectrz have been scaled to the same peak height.

not be neglected, at least not at low buffer-gas pressures.
Note that the data was consistent with our assumption
that diffractive scattering does not contribute 1o fine-
structure mixing; otherwise, one would have observed
narrow peaks in the nonresonant spectrum of order of
the homogeneous width.

By comparing the experimental resonant and non-
resonant excited-state spectra with the theoretical fits
{see Figs. 7-11), we observe an excellent agreement.
The theoretical model describes both the resonant and
the nonresonant spectra between 0.5 and 10 Torr at vari-
ous laser intensities, independent of the buffer-gas pres-
sure or the laser intensity. Furthermore, it should be
emphasized that no effort has been undertaken to optim-
ize the precise shape of the collision kernel beyond the
composite Keilson-Storer kernel. Values for the various
parameters a'?S, aSAS, 'S and I'SAS are given in
Table 1.

At this point, we should like to make a comparison
with the results of Liao et al.'* These authors measured
the resonant excited-state spectra in a setup similar to

Vzim/s) —e

FIG. 12. Theoretical nonresonant excited-state spectra for
a®*%=0.95, 0.975, and 1.0 (weak collision limit), respectively,
showing that small-angle scattering has a considerable
influence. The spectra have been calculated for a pressure of
0.5-Torr krypton, a**$=0, a pump laser intensity of 36
mW/cm?, and a detuning of 0.8 GHz below line center of the
20 transition. The velocity v, is defined by v, =Aw/k with
respect to the 3—4 transition.

ours, but they did not measure nonresonant spectra.
Their analysis differs from ours in three respects.

(i) They did not include optical hyperfine pumping
into their model. Therefore, the relative hyperfine popu-
lation in the resonant ground-state hyperfine level acted
as an additional free parameter in their treatment.

(it} They did not relate the rate for velocity-changing
collisions to the diffusion coefficient, which resulted in
still another free parameter.

(iii) The most important difference between their
analysis and ours is that they included the fine-
structure-changing collisions in an erroneous way, lead-
ing to a pressure-dependent cross section for velocity-
changing collisions. In their model, the fine-structure-
mixing collisions were taken to be independent of the
velocity-changing collisions; this choice was motivated
by a single measurement of the nonresonant excited-state
spectrum from which they (wrongly) concluded that the
resonant and nonresonant excited-state spectra have
similar shapes. In the L base, their choice is equivalent
to the assumption that the population and orientation
kernels for velocity-changing collisions (LAS + SAS) are
identical. It seems much more realistic to take the
orientation kernel identically equal to zero (as we do in
this work), since collisions tend to destroy any magnetic
state coherence. Based on this unrealistic assumption,
they obtain a theoretical rate for velocity-changing col-
lisions within the P, ,, level which is three times larger
than in our rate-equation model (Eq. (3.1), where only +
of all velocity-changing collisions starting in the 2P,
ends up in the same level and £ of those collisions are
accompanied by a fine-structure change. When analyz-
ing the experimental resonant fine-structure spectrum us-
ing their model, one expects to find a cross section for
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TABLE 1. Parameters of composite Keilson-Storer kernels describing ground-state and excited-
state Na-noble-gas collisions. The tabulated values refer to a temperature of 400 K and a buffer-gas

pressure of 1 Torr.

Na 4 He Na + Ne Na + Ar Na + Kr Na + Xe

rAs (100 s+ ") 12.3 5.17 8.61 9.80 12.8
r$As (100 s 1) 477 19.8 26.3 17.9 12.1
alhs 0.8 0.4 0.2 0.0 0.0
ashs 0.99 0.975 0.975 0.975 0.975
PLAS (10° s 1) 9.07 4.96 6.84 6.90 8.58

wey (10°s 1) 0.018 0.019 0.21 0.13 0.08
al*s 0.8 0.4 0.2 © 00

4

0.0

velocity-changing collisions which is a factor 3 too low
for low buffer-gas pressures, when the fine-structure pop-
ulations are not in equilibrium, and which approaches
the correct value for high pressures, when the fine-
structure populations are in equilibrium. They indeed
observed such an artificial increase of the cross section
for velocity-changing collisions with pressure.'*

B. Ground-state measurements

In Fig. 13 we present experimental ground-state probe
spectra and compare them with theoretical ones. We
have recorded ground-state spectra for all noble gases
keeping the pump laser frequency fixed in the red wing
of the 35 °S, ,,, F =2—3p °P, ,, transition, about 1 GHz
below line center, while scanning the probe laser over
the 35 °S,,,, F=1—3p P, , transition, probing the ve-
locity disiribution in the F =1 ground-state level. As
compared with Fig. 6 where we showed the complete
ground-state spectra, in Fig. 13 we show only the parts
belonging to the F =1 ground-state level. The spectra
are presented as a function of the Doppler-selected ve-
locity component v, along the laser beam, referring to
the transition starting from the F =1 level. The spectra
were recorded at a buffer-gas pressure of 50 mTorr and
at pump laser intensities between 4 and 26 mW/cm’.
The two peaks (with amplitudes 1:5) around v, = — 500
m/s represent the *“Bennett peak™ in the F =1 ground
state; these peaks arise due to optical pumping from the
F =2 to the F=1 level. The splitting of this Bennett
peak is due to the *P,,, hyperfine splitting (Avyps=192
MHz); the ’P,,, hyperfine splitting is not resolved in
these spectra. The ratio 1:5 of the peak amplitudes
reflects the transition probabilities of the 3s2S,,,,
F=1-3p?*P,,,, F=12 transitions. The pedestals
around v, =0 are due to velocity-changing collisions in
the F =1 level.

In principle, the theoretical ground-state spectra again
contain four free parameters: [LAS, [SAS oLAS 5SAS
For Na ground-state (L =0) collisions there are no
orientation or alignment kernels and rates. Two of the
remaining free parameters can be eliminated by using (i)
the diffusion coefficient (Eq. 4.8) and (ii) the hard-sphere
value for a“*S. For the ground-state case experimental
data for ' are not available. However, since there is
evidence®® that very weak velocity-changing collisions
can be characterized by an effective rate

ISAS=I5A5(1—a54S), we attempted to fit the data using

>33 as a single free parameter. The theoretical spectra
are scaled to yield the same maximum peak value as the
experimental spectra. Good agreement between theory
and experiment was obtained (see Fig. 13) for the values
of I'S4S given in Table I.

We stress that it would go beyond the object of this
work to optimize the shape of the collision kernel (that
is, going beyond a sum of two Keilson-Storer kernels).
However, even without such optimization, the fit be-
tween experiment and theory is quite adequate. Since
we scaled the experimental spectra to give the same peak
height as the experimental ones, our spectra are quite
sensitive to the small-angle scattering. Therefore, the
deviation of I'$}® from zero, which we deduce from our
experiments, is certainly significant.

Our ground-state measurements are closely related to
the work of Aminoff er al.,'> who measured Na
ground-state orientation relaxation (Am ) due to Na-Ne
collisions. Due to the fact that | F|-changing and F-
reorientation collisions of Na ground-state atoms in a
noble gas do not occur, orientation relaxation is only
caused by velocity-changing collisions and their orienta-
tion relaxation measurements yield information
equivalent to our population relaxation measurements.
From an experimental point of view, the major
difference between their measurements and ours is that
we could use separate dye lasers as pump laser and
probe laser. Consequently, we were able to monitor col-
lisions changing the velocity from v, 10 Uprobe, Where
Uprobe could be scanned over the entire velocity distribu-
tion, keeping v, constant. Such a scan immediately
yields the ground-state velocity distribution. Aminoff
et al."’ could only monitor collisions changing the veloc-
ity from - v,y 10 40 ym,, yielding a signal propor-
tional to the product of the (frequency-dependent)
Maxwellian pump absorption and the ground-state ve-
locity distribution. Moreover, they had to perform a la-
borious correction due to a backward reflection of the
pump beam which resulted in a second, unintentional
pump beam, running through the cell, nearly copro-
pagating with the probe beam. In our data, a contribu-
tion due to such a pump laser reflection is also present,
but this spurious signal appears spectrally separated
from the true pump laser signal and does not interfere
with the proper signal, even at high pump laser intensi-
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ties. Aminoff et al. have fitted their data with a com-
posite kernel being the sum of a Keilson-Storer kernel
and a difference kernel. They used five adjustable pa-
rameters to fit theory to their experimental data and ob-
tained, for the case of Na-Ne, a rate of velocity-changing
collisions which, when transformed into a diffusion
coefficient, is a factor of 2 smaller than its accepted
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FIG. 13. Ground-state spectra as a function of probe detun-
ing for vari »us buffer gases. In this figure v, denotes the veloc-
ity component along the axis of the laser beam for resonant
atoms in the F =1 ground-state level. The heavy curves are
the model calculations and the thin curves represent the exper-
imental spectra. In the model calculations the only free pa-
rameter used is T3A% (see text); the optimum fits presented here
have heen obtained with values of T'$Ay given in Table 1. (a)
Resv.ts for 0.050-Torr He as a buffer gas. Parameters are as
foll ws: pump laser intensity 26 mW/cm?; pump laser detun-
n 0.8 GHz below line center of the 3s, F ==2-- 3p trancition;
p.mp laser beam diameter 2.2 mm; probe laser intensity 0.2
mW/cm?; probe laser beam diameter 1.5 mm; temperature 393
K; and Na density 10°' ¢m '. (b) Same as (a) for 0.050-Torr
Ne at a pump intensity of 7.4 mW/cm? (¢) Same as (a) for
0.050-Torr Ar at a pump intensity of 7.9 mW/cm?. (d) Same as
(a) for 0.048-Torr Kr at a pump intensity of 7.9 mW/cm?. (e)
Same as (a) for 0.053-Torr Xe at a pump intensity of 7.4
mW/cm”.

value.”® By using the relation between the collision rates
for velocity-changing collisions and the well-known
diffusion coefficient, our theoretical spectra are intrinsi-
cally consistent with the diffusion coefficients.

VI. DISCUSSION AND CONCLUSIONS

We have shown that for all Na—noble-gas pairs, the
experimental spectra for both the Na ground state and
the Na excited state are adequately described by a
straightforward rate equation model for a wide range of
experimental parameters. It has been found that the
spectra could be fit with a composite Keilson-Storer ker-
nel consisting of a large-angle and a small-angle
Keilson-Storer kernel using only the strength of the
smail-angle collisions as a free parameter. In particular,
the nonresonant excited-state spectra are surprisingly
sensitive to the small-angle kernel. Given the nature of
the approximations made in formulating the theory, the
agreement between theory and experiment is remarkably
good. In particular, the reduction of the actual level
scheme to an effective five-level scheme with the conse-
quential averaging over the magnetic substates and
excited-state hyperfine structure is an assumption that
warrants additional investigation. Also, the sudden ap-
proximation is somewhat marginal, especially for the
heavier noble gases. On the other hand, the experimen-
tal data seem to be consistent with the assumptions that
classical scattering leads to depolarization of the L =1
state and that diffractive scattering does not lead to
depolarization.

Unlike most previous experiments which focused on
the description of velocity-changing collisions within a
single level, we have measured the velocity distributions
in all levels which are populated in the presence of a
pump laser tuned to the 3s—3p transition. The light-
induced drift velocity, which is a consequence of the
difference in collisional interaction between the ground-
state and the excited-state collisional interaction, can be
expressed as a suitably weighted average of all these ve-
locity distributions,

3
v =3 [ dvv,fiv,) . 6.1)
i=0

Using the strength parameters for the Keilson-Storer
kernel obtained in this work, the drift velocity can be
calculated employing collision kernels for velocity-
changing and fine-structure-changing collisions which
have been pioven successful at the spectroscopic level of
detail in the present work. As can be seen from Eq.
(6.1), the drift velocity is a much cruder quantity than
the spectra presented in this work since the calculation
of the drift velocity involves a lot of averaging. Conse-
quently, we expect that the model will certainly give a
satisfactory description of a transport effect such as
light-induced drift; the first quantitative experimental in-
formation on the drift velocity® indeed yields excellent
agreement with the rate-equation model. The conse-
quences of the collision model established in this paper
for the phenomenon of light-induced drift, such as the
sensitivity of the drift velocity for the shape of the col-
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lision kernel and the influence of the fine-structure-
changing collision on light-induced drift will be dis-
cussed in a subsequent paper.%®’
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We present experimental and theoretical results describing the presence of radiative-decay-
induced narrow resonances in systems which do not conserve population, alignment, or orientation.
We show how spectroscopic line-shape analysis of the nonlinear response can be used to determine
all of the relaxation parameters characterizing a two-level atom.

In this paper we demonstrate how spectroscopic line-
shape analysis can be used to determine all of the relaxa-
tion parameters characterizing a “‘two-level” atom. This
problem is investigated in the context of a simple gas-
phase collisionless system, but has important implications
for interpretation of nonlinear-spectroscopy data in more
complicated systems such as solids or liquids. This work
also demonstrates the observation of linewidths smaller
than the radiative linewidth associated with the two-level
transition. The narrow resonances which are observed
may serve as the basis for constructing a narrow-band
tunable optical filter or for locking two laser frequencies
together.

Consider one or more radiation fields driving a transi-
tion between atomic levels 1 and 2 (Fig. 1). A simple re-
laxation scheme has been assumed in which, owing to in-
teractions with a reservoir (such as perturber atoms or
spontaneous emission), levels 1 and 2 decay with rates y,
and y,, respectively, and the 1-2 dipole coherence decays

A Y
1 !

FIG. 1. Simple two-level system with spontaneous emission
v, from level 2 to 1. Level 1 decays 10 eservoir at rate y, and
level 2 decays to the reservoir at rate , -y, .

38

with rate y,. Ac a result of spontaneous emission (or
some other interaction), level 2 populates level 1 at a rate
Y-

It is often of interest to obtain values for each of the re-
laxation constants y,, ¥,, and y,,. We restrict the discus-
sion to a spectroscopic determination of these parameters
and recognize that y, represents a general decay to the
reservoir which could be due to collisions, radiation, pho-
nons (in a solid), etc., v, represents the total decay rate
of the dipole coherence which has contributions from y,
and v, along with contributions arising from other pro-
cesses (e.g., collisions).

In standard linear spectroscopy, the absorption line
shape can be used to obtain y, only. Increasing the field
strength modifies the linewidth parameter so that it de-
pends on all three decay parameters (as well as the field
strength). Hence, in principle, strong-field studies could
be used to obtain information about y,. However, to ar-
rive at spectral line shapes with components whose
widths give a direct measure of y,, y,, and y,, it is
necessary to use at least two fields and examine the non-
linear response as a function of frequency.

A general scheme for obtaining such profiles is shown
in Fig. 2, in which three fields propagate in an atomic va-
por (or other material) and produce a signal via nearly
degenerate four-wave mixing (NDFWM). Laser fields |
and 2 are detuned from the resonant trausition frequency
by A and laser field 3 is detuned by A+8. As § is varied,
the (nearly) phase-conjugate signal generated in the direc-
tion —k; is monitored. In general, for Doppler-
broadened materials and detunings |A | less than the
Doppler width associated with the 1-2 transition, the sig-
nal intensity as a function of & exhibits a spectrum con-
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sisting of two peaks at =0 with widths (FWHM, full
width at half maximum) of 2y, and 2y,, respectively, and
a peak at 8=2A of width 4y,,."*

Physically, the first resonance at 6=0 occurs as a re-
sult of a two-photon Rayleigh-type process involving the
probe beam (field 3, k;} and the forward pump beam (field
I, k,l. and is actually the superposition of two reso-
nances. The widths of these two resonances centered at
8=0 are determined by j}; and y,, respectively, because
the resonances are associated with the temporal modula-
tion of the state populations at rate . The strength of
the contribution of state i decreases when § exceeds y,.
The resonance at =24 results from the condition that
the same velocity-selected atoms interact with both the
signal beam (at -k;) and the forward pump beam. The
width of this resonance is determined by the total dephas-
ing rate y,,, reflecting the contributions to the spectral
response from both a one-photon (simple absorption) and
a three-photon process (absorption of two pump photons
and emission of a probe photon, giving rise to the signal
beam) which are characterized by the dipole-coherence
decay rate. Additional ccntributions to the resonances
are not observed because they are washed out by thermal
averaging.

We note that ¥, — 3, is the decay rate of level 2 to the
reservoir. In the limit that levels 1 and 2 decay to the
reservoir at the same rate, i.e.,

Vi=Yar—VYa ()

(as in the case of a gas-phase atom where y, is deter-
mined by the inverse transit time, denoted by ,), the res-
onance having width 2y, does not occur. The width of
the abserved resonance is 2y, where y,=7,,+y,. In
other words. the resonance having width 2y, is absent
whenever the iotal population p,+p,, is conserved, ex-
cept for an overall decay owing to 1, (p,, s a matrix ele-
ment of the population density matrix operator). The
purpose of this paper is to show both theoretically and
experimeritally that a narrow resonance having width 2y
cun be observed whencever Eqg. (1) is violated for either
atomic state populations or total magnetic state orienta-
tion or alignment associated with levels 1 and 2. (This
principle can be generalized to account for degeneracies
arising from other than rotational symmetries.)

38 EFFECTS OF RADIATIVE DECAY IN FOUR-WAVE-MIXING . .. 253

The existence of the narrow resonance due to noncon-
servation of population is demonstrated on the
28 ) F =2)=2P 5,(F =2) transition in sodium. Popu-
lation is not conserved because the excited state can radi-
atively decay to another hyperfine level in the ground
state (optical pumping). The analogous resonance result-
ing from nonconversation of total orientation or align-
ment is seen on the 2§, ,(F =2)-+2P, ,(F =3) transi-
tion (a transition which does conserve total population.)

These resonances may be compared with the so-called
pressure-induced extra resonances (PIER4) predicted and
observed by Bloembergen and co-workers,” as well as a
number of related effects.* In most of these situations
one deals with either atoms subjected to homogeneous
broadening only or to inhomogeneously broadened sys-
tems with atom-field detunings | A | much greater than
the Doppler width. In those limits, as has been discussed
in detail elsewhere,™* both resonances centered at &=0
(having widths 2y, and 2y,, respectively) vanish under
suitable conditions. The relationship of our work on in-
homogeneously broadened systems to that on PIER4 and
related resonances will be noted. In particular, it appears
that a destructive interference argument used to describe
PIER4 is somewhat artificial when applied to an
ensemble-averaged inhomogeneously broadened system.

It should be noted that experiments on inhomogene-
ously broadened systems with ;& - less than the Doppler
width have been performed previously,” but with an em-
phasis which differs considerably from that presented
herein.

I. THEORY

The geometry of the experiment is shown in Fig. 2.
Beams I, 2, and 3 propagate in the cell with wave vectors
k), ky= —k,. and k;, respectively. The third beam makes
a small angle 0 with the first. As we note below, the fact
that 0 is nonvanishingly small is important in systems in-
homogeneously broadened by Doppler motion. The fre-
quency of the laser fields are Q,=Q,=Q and Q, =1 +.
One observes the phase-conjugate signal emerging in the
direction k, = —k; (due to phase matching) with frequen-
cy 1, = — 8 as a function of 8.

The physical ideas we wish to emphasize are best illus-
trated by considering two cases which are simpler than
the actual experimental level scheme, but illustrate all of
the important physics. In the first case we consider the
problem when the fields drive a transition from a ground
state with total angular momentum F =0 to an F =1 ex-
cited state. In the second case we consider the problem
when the transition is from an F =1 ground state to an
F =0 excited siate. In both cases the fields are taken to
be lincarly copolarized in a direction that defines the
quantization axis in the problem. Becausc of the dipole
selection rules, the fields induce a transition between the
F =0 state and the m =0 substate of the F =1 state. In
both cases the decay rate y, of level 2 is determined total-
ly by the rate of spontaneous emission back to level 1,
though in the second case the m =0 excited state can de-
cay back to any of the three magnetic substates. The sig-
nal is proportional to the absolute square of the averaged

P T T gy
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w7

density matrix clement py o5, ~k;3,v)), where F; and

F, refer to the angular momenta of the ground and excit-
ed states, respectively, and the average is over the atomic
velocity distribution (assumed to be Maxwellian with

most probable speed u). The argument —Kk; signifies that

we are concerned only with the component of PF,:F,

ik R+(Q-di)
varying as ¢ , which corresponds to the sig-

J

nal propagating in the —k; direction.

Consider first the F; =0—F,=1 level scheme. Using
perturbation theory to lowest order in the product of the
field amplitudes and neglecting transit-time effects, one
can solve the transport equation for the population densi-
ty matrix operator and obtain the result {see Egs. (A1)
and (A21) of the Appendix and Ref. 5]

Ny kR4 102 8
p(x,:,o(—k_‘,v)zzml’,‘,\’{hel R “][?’124-1'(A—5-+-k3"’)]‘l
X X 2y, —ild+(ek =k o [} T {{y ), —i(A+8—kyv)] "+y+i(A—ek,v)] Y, (2)

€=11

where N is the ground-state density, A= —w. w is the
atomic transition frequency, ¥, =p, E, /24 (i=1,2,3)is a
Rabi frequency (E, is the laser field amplitude and p,, is
an atomic-dipole-moment reduced matrix element.)

The e=1 term in the sum in Eq. (2) can be viewed as
the scattering of field 2 from the “‘coarse™ (spacing ap-
proximately equal to 1/]|k,—k;|) population grating
formed by fields 1 and 3. It is common to combine the
terms in the second set of curly brackets in Eq. (2) to
demonstrate that the resonant denominator (y,—i[8
+ ek, —k;)v]) disappears when y,,=v,/2 but not
when y ;5 7./2, as would occur if collisions were present
(PIER4 resonance’). A typical interpretation of this
effect is based on the fact that the two terms in the
second set of curly brackets are associated with two
different calculational perturbation sequences of the non-
linear response of the atoms to the applied fields. The
different sequences are distinguished by the order in
which fields 1 and 3 act. Combining these terms appears
to give rise to an interference effect which cancels the y,
resonance. This feature of the line shape is especially
relevant for stationary atoms (v=0) or for large detun-
ings (i A >>hku) when both terms in the second set of
curly brackets in Eq. (2) contribute to provide the in-
terference effect. However, for detunings | A | <ku and
decay rates vy, < ku (“Doppler limit™), the situation is
|

2V’ T

-
changed. When Eq. (2} is integrated over velocity in the
Doppler limit, only the [y, +i(A—k;-v)] component of
the e=1 term survives the velocity averaging (for all the
other terms, the poles all lie in the same half plane, giving
a null contribution when a contour integration is carried
out).

Since one of the pathways in Eq. (2) no longer contrib-
utes, an interpretation of the disappearance of PIER4
effects as a destructive interference of two pathways in a
perturbation chain seems somewhat artificial for the
velocity-averaged atomic ensemble.

Equation (2) is averaged with a Maxwellian Wi(v)
=(7u®) *exp[—(v/u)*). Assuming that (k,u6)’
<<(y,)? one finds

No P
| {pon:iol —k3¥)) | ‘3—3' TXYTGX, ! k

1 2
[2y,,—i(2A—8)] ty,—i8) |~

(3)

There is a resonance at 5=24A having a width (FWHM)
4y, and a resonance at §=0 having a width 2y,.

The line shape changes dramatically if one considers
the F; =1 to F, =0 transition. In that case [see Egs. (A1)
and (A21)]

(Prooot —k3¥)) | :N() ]} X3X 1=

where r =1 and y, is the ground-state decay rate (deter-

mined, for example by transit-time effects), which is as-
sumed to e much smaller than y,. The average in Eq.
(4) is over the transverse velocity distribution and leads to
a residual Doppler broadening (width approximately
equal to Ak,u6) for the narrow resonance centered
at 6=0. The fact that the two-level system under
consideration is not closed (in the sense that py o
+ P02 const) leads to a new resonance of width 2y,
{plus any residual Doppler broadening). Since ¥y is usu-

[2)'12—1(21& 5)]

r
(1/2—16 <y —i[d~-(ki—k;) v]>

ally much smaller than y, we observe a narrow spike as-
sociated with the resonance.

Although the population of the two-level subsystem is
not conserved, the total population of the upper and
ground levels is conserved, with population transferred to
the my =11 ground-state levels. In a somewhat more
general picture of this problem, one can say that populia-
tion is conserved, but the total magnetic state alignment
of the system is not. The process of field absorption plus
spontaneous emission leads to a net gain of alignment. In
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general, one can expect narrow (ground-state) resonances
when either total (excited plus ground state) population,
orientation, or alignment is not conserved. When the
more general theory is applied to allow for arbitrary F,
and F, as well as optical hyperfine pumping, the final re-
sult still takes the form of Eq. (4), but with a different
value of r. Moreover, in one of the transitions studied
below, the value of r can be negative, producing a narrow
dip in the spectral profile.

In an effort to provide additional physical insight into
the origin of the above results, we consider a time-domain
description of the interaction, which is justified since the
state populations are modulated at frequency 5. In the
first case where the total population of the two states in-
volved in the transition is conserved, the applied field
creates a population in the excited state and decreases the
population in the ground state. This perturbation in the
excited state decays by spontaneous emission at rate y,.
Similarly, the perturbation in ihe ground state also de-
cays at rate y, due to spontaneous emission from the ex-
cited state. However, in the second example, while the
excited state decay is still determined by y,, the perturba-
tion in the m =0 ground state no longer decays at the
excited-state decay rate. This is because some of m =0
ground-state population, which is excited to the upper
state, now decays to the m ==*1 ground states. Hence, a
“residual” perturbation remains in the m =0 ground
state, which decays at rate y .

I1. DISCUSSION OF RESULTS

Two transitions in atomic sodium were chosen to
test the ideas discussed above: the 3s2S,,(F
=2)-3p 2Py ,,(F =3) transition of the D2 line at 589 nm
(designated  transition A4) and the 3s52S,,(F
=2)-3p 2P, ,(F =2) transition of the D1 line at 589.6
nm (designated transition B). The experimental
configuration is similar to that described earlier® and is
shown schematically in Fig. 2. A frequency-stabilized
tunable cw dye laser (Coherent 699-21) was tuned to fre-
quency {) near the resonant frequency of the specific
transition to provide the two counterpropagating pump
beams (the forward pump at k, and the backward pump
at k,=—k,, respectively). The probe beam (at k;) is at
frequency +8 and was provided by a second
frequency-stablized tunable cw dye laser.

The two counterpropagating pump beams were aligned
interferometricly to be exactly counterpropagating, while
the angle between the forward pump and probe was ad-
justed to be less than 2 mrad (measured in the plane of in-
cidence) and less than 0.4 mrad {(measured out of the
plane of incidence). Such care was required in order to
avoid having the measurements dominated by residual
Doppler broadening which characterized the earlier mea-
surements on the effects of collisions (see Lam, Steel, and
McFarlane, 1982 and 1986, in Ref. 2). In order to mini-
mize optical-pumpin§ problems, pump intensities were
kept below 2mW/cm* and the probe beam was a factor of
2 weaker than the pump beams. (Even at these power
levels, it is still not possible to avoid saturation effects in
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alignment and orientation as we discuss below.)

The forward pump was chopped at approximately 300
Hz and phase-sensitive detection of the signal was accom-
plished using a lock-in amplifier. The amplifier output
was then further processed using a real-time signal
averager.

The experiments on transition 4 were performed with
the pump beams detuned 51 MHz above the
352§, ,(F =2)-3p 2P, ,(F =3) transition. This was to
reduce hyperfine optical-pumping problems associated
with transitions to the adjacent F =2 and F =1 excited
states. Using linearly polarized input beams with the
probe-beam polarization orthogonal to the pump beams
we observed the line shape shown in Fig. 3(a) (the detec-
tor polarization was parallel to the probe polarization.)
In this configuration the line shape is sensitive only to
alignment and orientation effects. As anticipated above,
we observe two peaks: one peak with a central dip at
8=0 and a second peak at 6=2A with a width given by
4y,,. In the balance of this discussion we will concen-
trate on understanding the details of the first peak.
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FIG. 3. NDFWM spectrum of the 3s5°S,,(F=2)
—3p 2P, ,(F =3) transition. The optical beams are linearly po-
larized and the probe beam polarization is orthogonal to the
pump beams. (a) Experiment. (b) Theory. The detuning is nor-
malized to ¥, (y,/27=10MHz) and A/27=51 MHz.
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Because of the presence of the magnetic substates, we
expect a spectral structure of the form indicated in Eq.
(4). This is a direct result of the fact that a given m level
in the excited state (excited from a specific m’ level in the
ground state) can decay to an m” level in the ground
state. However, unlike the simple situation described by
a F=1—-F=0 transition, each magnetic ground-state
level is coupled to the excited state by the field. The

four-wave-mixing signal has a contribution from the
alignment and orientation decay of both the ground state
and excited states. Since spontaneous decay results in a
total ground-state plus excited-state orientation and
alignment which is negative, the value of r in Eq. (4) be-
comes negative. Specifically, the polarization may be cal-
culated using perturbation theory as [see Eq. (A35)—it is
always assumed that (k,u8)? <<(y,)?]

2V 1
P| = [V2N,(X$0x ) x®p, .5
P PP o | |y eia—e)
2
ER R 5.0
X1 120 | 1050 yz—i8—<7.——i(8—Ak-v)> l ®
-

where Ak=k;—k;. The notation X Lf;) corresponds to the
previously defined Rabi flopping frequency for field “i”
between the excited state e and the ground state g, the an-
gular brackets again indicate a velocity average, and N,
denotes the F =2 ground-state density. For comparison
with the experiment, however, we have included in the
theory contributions from the F=2 to F =2 transition
along with “‘crossover” terms that also add to the signal.
For weak fields, the measured response is proportional to
the modulus squared of the polarization. In arbitrary
units, Fig. 3(b) gives | P |? [from Eq. (A35)] as a function
of & where the detuning is normalized to y,, and the
average has been carried out assuming that
(ky—k)v=k,v,0 with 6=1.9 mrad. In addition, we
phenomenologically incorporated approximately 4 Mhz
of relative laser jitter into the §=0 and 8=2A reso-
nances.’

As we see from the qualitative agreement between the
J

1P| = VAN, X p. 1 5 I

Jx (3
7

o=
i
o)

31
11

Again, the negative sign in front of the ¥, resonance re-
sults in the dip. However, in fact, the observations show
that the dip is absent and a spike is observed. For com-
plete comparison with experiment, it is necessary to in-
clude the effects of the F=2—F =2 transition as well as
the crossover terms. In this case, the main effect of the
addition of these other terms is to change the relative
sign of the y, resonance, leading to a spike rather than a
dip in the output. Figures 4(a) and 4(b) compare experi-
ment and theory, where Fig. 4(b) displays the results of

Eq. (A36).
In order to confirm the effects of nonconservation
of population, we performed experiments on the
]

5 1

27, +i(2A—5)

[Pl = V2N, DXl
k)

l i1
31 11 kyu

274, +i(2A-6)

Il

data and the theory, the resultant ground-state alignment
and orientation produced by decay of the excited state re-
sults in a destructive-type contribution to the spectral
response [i.e., r <0 in Eq. (4) above] producing the ob-
served dip. The width of the dip is determined by residu-
al Doppler broadening and laser jitter. (The relative in-
tensities, though not the widths, of the two resonances
depends sensitively on the intensities of the input optical
beams. We currently believe this is due to the onset of
alignment and orientation saturation effects which are
currently not included in the theoretical analysis.)

An analysis similar to that above indicates that an
analogous behavior should be observed when all the input
beams are copolarized, except the strength of the dip
should be weaker because the nonlinear response is dom-
inated by population terms. Namely, the polarization
produced on the F =2-F =3 transition is given by [see
Eq. (A36)]

S
20

1
7875

384 _< 14 ) ©
y,—i8 \y,—i(8—Ak-v) '

-
3528, ,(F =2)-3p 2P, ,,(F =2) transition of the D1 line
at 589.6 nm (the B transition.) The D1 line was chosen
over the D2 line because the excited state hyperfine split-
ting on the D1 line is 189 MHz. The larger splitting
reduces the contribution from nearby transitions. (None
of the transitions on the D1 line conserve population,
hence the population-conserving experiment had to be
performed on the D2 line.) Figure 5(a) shows the experi-
mental data on the D1 line using linearly copolarized
beams. The polarization is given by Eq. (A37), where un-
like an earlier simple analysis,® the effects of magnetic
substates are included. The theoretical spectral response
[Eq. (A37)] is given by

1

900

5 41.5 < 20.5 )
20

y,—id Yy, —i(§—Ak-v)

t (7
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FIG. 4. NDFWM spectrum of the 3s5°§,,(F=2)

—3p*P,,,( F=3) transition. The optical beams are linearly po-
larized and the probe beam polarization is paralle! to the pump
beams. (a) Experiment. (b) Theory. The detuning is normal-
ized to vy, (y,,/2m=10 MH2z) and A/27=73 MHz.

and is plotted in Fig. 5(b). In contrast to the earlier mea-
surements above, this transition does not conserve popu-
lation, and population terms dominate the alignment
terms, resulting in a spike.

In summary, we have shown that systems which do not
conserve population, alignment, or orientation are
characterized by a narrow resonance which can either
constructively or destructively contribute to the spectral
response in four-wave mixing. Based on this work, we
see that in principle, it is possible to obtain all three of
the decay rates which characterize the transition.
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APPENDIX

In this appendix we outline a method for calculating
the polarization responsible for phase-conjugate emission.
The techniques used to arrive at the results are fairly
standard, and details of the method can be found in a
number of references.” We consider a transition between
two manifolds of levels. The quantum numbers which
characterize the lower manifold of levels are L (total or-
bital angular momentum), S; (total spin angular momen-
tum), J; (coupling of L and Sg), I {total nuclear angular
momentum), and G (total angular momentum —coupling
of J; and N. The corresponding quantum numbers for
the excited manifold of levels are Ly, Sy, Jy. I, and H.
Transitions cccur between hyperfine levels G of the lower
manifold and H of the upper manifold. The labels Lg,
S¢. I, and J; are suppressed in the formulas except when
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needed explicitly. The summation convention (all repeat-
ed indices appearing on the right-hand side of an equa-
tion are summed over, except those which also appear on
the left-hand side of the equation) is used throughout.
The labels F,F’, etc. are hyperfine angular momenta
quantum numbers that can refer to either the lower or
upper state manifolds of levels.

The atomic state density matrix elements are expanded
in an irreducible tensor basis as

pSF F)=(=1)" " (F,mg;F', —mp | K,Q)

Xp(F,mg; F',mg.) , (Al)

where (F,,m;F,,m,|F,m) is a Clebsch-Gordon
coefficient. The electric field vector for the applied laser
fields is taken as

( l(k ‘R (lll
/IA(/) +c.c

E(R,1)=16 (A2)

The applied field is a sum of fields, each with complex
]

amplitude &Y', complex polarization €'/, propagation
vector k;, and frequency €;. The atom-field interaction
energy may be written as

VIR,1)=(- 1Vp,E_,(R,1), (A3)

where

_ . _ 1 _
Par= +72—(px ip,), Eyy=F —=(E iE,),

E,=E, , (A4)

Po=P:»

and p,,p,,p, are components of the atomic-dipole-
moment operator. Note that (p.,,p,) are components of
an irreducible tensor operator of rank 1.

Introducing the standard interaction representation by

- '“)I-'F’l

pS\F.F)=p§(F,Fe (AS)

one finds that, owing to the atom-field interaction, densi-
ty matrix elements evolve as

: i(—1VE _ (R} —DFF :

L o - q fQp g KK 1 "o ~ K’ I

—polF.F)= 3 [e FF -Aogg F"',F'\F)p o\ F,F")
e e NS F FLF(— DK K5 K E FY (A6)

I
where p; is a reduced matrix element where y(J) is the decay rate for each of the hyperfine
levels within a state of given J. It is assumed that this
FoF F
pre={F|IpIIF") =(=1)""Fpfy (AT) (F independent) decay rate results from both spontaneous
and emission and the finite lifetime the atoms spend in the
KKl oK o laser beams.
Agpr o\ FELF)=(~-1) " 32K+ D]~ (3) Spentaneous emission from levels H to G repopulate
[K K1 the G levels. Consequently, a term

x{K',Q';51,q | K,Q) ]F P

(A8)

where the quantity in curly brackets is a 6-j symbol. Any
additional contributions to the time rate of change of
pg(F,F’) from sources other then the applied fields must
be added to the rhs (right-hand side) of Eq. (A6).

For the specific problem under investigation, Eq. (A6)
is modified as follows.

(1) Incoherent pumping terms

ASUF, F'Y=A3(F)8p 1Bk 0800

__AME)

are added to the rhs of Eq. (A6). The quantity A(F) is the
rate density (in phase space) at which hyperfine level F is
incoherently pumped by sources other than the laser
fields.

{2) Decay terms (no sum)

—Vrep §UF F) (A10)

are added to the rhs of Eq. (A6). The decay rate y 4 is
defined by

¥ o=y e + U] (A1)

X H.HG,G P §(G,G 8,686 (A12)

must be added to the rhs of Eq. (A6).
yX(H,H';G,G") is defined by

The quantity

vy H,H,G,G ) =(— 1Y K +C [ + 12H +1)]
v v K|
x‘lG, G 1ly(H,H’;G,G')
(A13)
where
4 | opgo 3
HGYWH'G
’, ’Gl —_— ———
y(H,H;G,G") 3 o2
X[(ZH +DCH' + D) " poupén
(A14)

and wyy; is the H-G transition frequency.

{4) The resonance (or rotating-wave) approximation is
made in Eq. (A6) in which terms of order |(Q,
—wyg /oy | are neglected.

With these additions and approximations, the equa-
tions for the time development can be written
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$5(6,6"=~v6P§G.G)+y*HH',G,G' B §(H,H")
XA — 1)+ 6™ R T TN et AKKL(H,G", G )p §AG, H)

i) (— 12 1K K@ R —One Y (iye AL (B, G, G K oG H)T®

+(2G + 1 )—I/ZMG)5G‘G'5K‘QSQ,0 y (AlSa)
BECHH' )= —y gy SCH H) 41Xl 14— 120 +@ ¢ TR 0ma ey KKV (G, H', H)[p ¥ o (G H)]*
— X — 1) E K=Kt R =Y m0uG Ny yaei) AKKL(G, HLH )P (G, H)
+(Q2H +1)7V M H)8 y Bk 080 0 » (A15b)
FE(GH)= —y 6up §(G,H)+i(Xip)* (= )T+ T R U™ ne iy AKK (G, H,G 5 §1G,G")
— i) — 1)+ K=K kR e "(e;j’)"Agg:;(H',G,H)[ﬁ KotHH)]* {(A15c¢)
BE(F, F)=(~1)F ~F+OpK ,(F,F)]*, (A15d)
I
where the polarization components are defined by P(R,1)=(p)= —\/]_‘3-69( _H¥ —GPHG<pIQ(GsH)) tee.
=7 V’i(e;ﬂ«:ey‘), e =€l (A16) AL9)
and the Rabi frequency XYy by where
Gy )
X =pnG 6" /2H . (A17) e, =T Vlzz—(’iii’)"), =12, (A20)

It is to be noted that the time derivative is to be interpret-
ed as a total derivative, i.e.,

d_23 v, (A18)

dr ot
where v is the atomic velocity.

Equations (A6) and (A 15) are quite general and can be
used as the starting point for many calculations in non-
linear optics. To calculate the phase-conjugate signal we
must solve Eqgs. (A15) to third order in the fields. The
macroscopic polarization of the sample is given by

]

%, ¥, and Z are unit vectors, and the average is over the
atomic velocity distribution. There are many terms
which contribute to pé(G,H) in third order. For incident
fields E'V=(k,,Q), E?=(~k;,Q), and E*(k;=k,Q
+38), the phase-conjugate field corresponds to the polar-
ization component which propagates in the —k; direc-
tion with frequency 1 —38. By solving Egs. (A15) to third
order in the fields and using Eq. (AS5), one finds the
phase-conjugate contribution to p'Q(G,H; —k; v)tobe

PO{G, H; —ky,v)=iV3(— 17+ el)*(eX) e Vexpli[k; R+ (2 —8) ]

3
X 3 (1-8,,0(1,0;1,—q" | K',Q")(1,¢1, -q | K",Q Mygy +i(Bys —8+k;v)] ™!

F=1

(X(};();'X(l-;')c ).X‘[:;)G'( —1 )H +G'+2G

K 1 1
G H H

K 1 1
G' H H

QG+ Dy yy—ild—wyy —ky; V(G H; G, H' ;MG ), MG"))

XX e X g =) - C [ H G G

K 1 1

K 1 1
H G G

(2G + 1"y 6o —i(8—wgg —ky; V) ;G H';G', H'; MG),A(G"))

X2 X —

l)ZG 4G+ H

K 1 1

K 1 1
H G G

Gu Hn H'

Q26"+ 1) [y g6 —itd—wge —ky; V)G H G H MG ), MG™))

xyX(H' H",G" G/ [y py—i(8—wyyp~k; ]| (A21)
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where
k;;=k;—k; , (A22)
Ayg=0—wy6 , (A23)
and
(G, H;G',H'; MG), MG 7' =8 ;(2G + 1) 'MG) Yoy +ilAyg —k;-¥)] ™' /v (Ug)
+8, 26"+ D7 IMG Ny g —i(Aye+8—kyv)] ' /yUg) . (A24)

For simplicity, we have set A(H)=0.

The polarization is calculated from Eqs. (A19) and
(A21). The incoherent pump rate density is assumed to
be of the form

MG)=Ngy(Jg)W(v), (A25)

where N is the G-state density and W(v) is the equilibri-
um velocity distribution ( in the absence of any applied
fields) given by

Wv)=(mu?)"exp(—vi/u?), (A26)

where u is the most probable atomic speed. We evaluate
the polarization corresponding to our experimental con-
ditions, namely: (1) The dominant transition amplitude is
between a single hyperfine ground-state level G and the H

r
hyperfine levels of either the J=3 or the J =1 excited
state; (2) |Ayq | 7k u << 1 and y yg 7k u << 1, implying
that only the j=1, j’=3 term in the summation in Eq.
(A21) contributes when the velocity integration is carried
out; (3) (k;—k,)v=k,0,, where k,=kZ and
ky~k,(Z+6%), with 0<<1; (4) (k,u6’? <<y, In
these limits, using the relationship

G4+Jy+1+1

(JyIH||p||JgIG ) =(—1) [(2G + 1)(2H +1)}'7?

e 1 Jy
X.[H I G Uulelde?  (A27)

to rewrite all reduced matrix elements in the J basis and
the fact that | 0wy /w0y | <<1, one finds a polarization

P(R,t)=iexp{i[ky R~ (Q—~8)]}€y(2V'm/k u)[Ng/(2G +1 )](x‘,'”’,Gx‘,ZH’,G >*x‘,-j;,cp,u,c
n Vg |y 1 9 )
XQH+D2H'+D26+ ¢ 1 vlle 1 B

X(_l)q'-f'Q( laQ;l,_q”]K’,Ql>(],ql;l,—q |KI,QI)

K' 1 1
X G H H,][ZYGH+i(2AHG—5)]_I[‘y(JH)—i(S—a)”'H)]"l
wonlK 1 TEIK 1] . \
+(—1) H G G H G G [27/0H+1(AHG+AH'G_6)]_
X(af ¥ Ty —I v Uy —vUg) +iogy ] [y —i(8—w0gny) ]~
+([y(JG)_i(a—k,eu,)]-')g1—af,ZH,,y(JH—.JG)[y(J,,)—y(JG)+iw,,,.,,.]—‘;)]+c.c., (A28)
I
where and
VI )
Xj”,G—(J,,||p||JG)6 /2%, (A29) o 1,20 321 .
ak e =(— 1 HHCGQH" L 1)(2G + 12y + 1) YUn—=Je)=34 2y +1)
2
Iy 1 Jg Kt 1
X166 I H'| |G H H" X | {JgllpIdu) |2 (A31)
kK v oH' |k 1)
% , (A30) The remaining average over v, is easily expressed in
1 6 G||H G G| o O .
terms of the plasma dispersion function as
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R -1y ] lE+6
(ly—itd—koo 1™ —7Z 0

b , (A32)

where Z is defined by

e’
pnix

1 x
Z(m=—‘/—;f_wdx , Im(u)>0 (A33)

with limiting values

Zip)~ivae Rewf 4 <1,

. (A34)

Zp)~—p~,, |p|>1.

For our experiment in sodium, I=%. G=2;H=1,2,3
WUy=4)or H=1,2(J4y=1). For the copolarized case all
veams are polarized in the z direction and ei,":&w
{i=1,2,3). For the cross-polarized case, beams 1 and 2
are polarized in the z direction [ef, =8, (i=1,2,)] and
beam 3 in the x direction [¢,"'=(1/V2)(8, _;~8,,)].

It is now a straightforward matter to evaluate Eq.
(A28) for our experimental conditions. The polarization
exhibits resonances at various values of 6. The “direct”
resonance at d =24 arises from the interaction of fields
1 and 2 with the same pair of transition levels, excited
|

7

P(R,1)= — &N explilky R +(Q-8)]}5 | 5

2
47.6
1050

state H and lower state G. The resonance at
8=(Aps+Ayg) (H'£H) is a “crossover” resonance in-
volving the interaction of field 1 with the G-H transition
and field 2 with the G-H' transition. Both these reso-
nances have widths characterized by the dipole decay
rate ygy. In addition, there are resonances at §=wy.y,
having widths characterized by atomic state population
decay rates. For H=H’, these are Rayleigh-type reso-
nances involving the interaction of fields 1 and 3 with a
single pair of transition levels G-H. For H+H’, they are
Raman-type resonances involving the interaction of fields
1 and 3 with two coupled transitions, G-H and G-H’, re-
spectively.

For the level scheme of our experiment and for the de-
tunings and frequency range under investigation, the Ra-
man terms do not contribute significantly to the line
shape and can be neglected without much error. More-
over, for the experimental detunings chosen, it turns out
that the (G =2)—(H =1) contribution to the D2 reso-
nance and the (G =2)—(H =1) contribution to the D1
resonance are negligibly small. With the neglect of the
above terms, the calculated polarizations are as follows.

(1) For cross polarized beams on the D2 transition
[/ =4(G =2)—J = 3{H =2,3)], the polarization is

Vo
2k: (thnlxtz )‘X(_?’p
1

}
EN EN
71 73

il
13

X {27 +i(285,—8)]" "7 ;' =0.1057 [ )+ 0.073[2y +i(24,,— &)} (=75 '=0.377 1)

+0.059[2y +i(Ay+ 4, —8)] "7 7' =2.197 T D] +c.c.

where
7.=([y3$)—itd—k,00,))), 7,=y3P)—id,
and

y=1y38)+v(3P)].

(A35)

The first two terms in (A35) are the “direct” resonances on the 2-3 and 2-2 transitions, respectively, while the third
term is the crossover signal involving both the 2-3 and 2-2 transitions.
(2) For copolarized beams on the D2 transition [J = (G =2)—J = 1(H =2,3)], the polarization is

2 -
384 2‘/17 ](x(l)x(Z )tx(l
kiu J

7875

7

P(R,1)=iZN,exp{i[k;R+{02—-58)t]}5 20

X {[2y +i(245,—8)) (7 7' ~0.03657 [ 1) +0.138[2y +i(24,,—8)] (77 '+0.4327 [ )

+0.158[2y +i(A5+ A5, —8)] "7 ;' +0.6497 7 ] +c.c. . (A36)
Note that it is possible for the crossover contribution to change the narrow resonance at §=0 from a dip, predicted by
the “direct™ terms alone, to a peak. This is, in fact, the case for the detunings in our experiment, A;,/27 ~73 MHz,
A,y /27 ~133 MHz.

(3) For copolarized beams on the D1 transition [J = }(G =2)—J =J(H =2)], there is a direct contribution only to
the polarization given by
W
kyu

2
47.5
900

S

20

P(R,t)=iZN,; exp{i[ky-R+(Q -8} ]}S

X [2y +i(24,,—8)]7 (7 ;' 40.4327 [ +c.c. (A3
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101 the assumtion (k,u8)’ <<(y,) is not made, the expression
for the polarization takes on a more complicated form. The
transverse velocity v, appears in resonance denominators in-
volving both y ¢, and y(J, ), as well as those involving y(J ).
The polarization then involves a sum of terms of the form

2V +i(A=84+k 60,)] [Ya—ild—k,Bv)] "),

where A=(Ayg+4A,6); H'=H or H'£H. This may be
rewritten as

(Ya—=2van—iB) " {[2yoy+i(A=6+k B0 )] ")

—([Ya—ild—k B0 1"} .

The resultant average over v, can be expressed in terms of the
plasma dispersion function, as described in the text [Eq.
(A32)], giving a term which vartes as

[y,,—-Zy(,-,,~i5] [—i/tku6)]|Z

k,u@

2iy gy —(A=8) l

iv.+d
kub

Under the actual experimental conditions, k,u8/y,~0.25.
This value is sufficiently small to ensure that the residual
Doppler width does not contribute significantly to the v, (or
2y,,) resonances. Of course, it is an easy matter to use the ex-
act expressions for improved accuracy. One simply replaces
any products of the form

Rycu+i(B=8)] '[yUy)—it6—wyy)] "
or
[2yu+itA—-81] ([ygi—il6—k,8u,)]

appearing in Eq. (A28) by the corresponding expression given
above involving the plasma dispersion functions.
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Theory of resonances in four-wave mixing resulting from velocity-changing collisions
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A theory of four-wave mixing including effects of velocity-changing collisions is presented. Three
fields with frequencies w, w, and w+8 are incident on a vapor of *“two-level” atoms having upper
state b and lower state a. Two of the fields are counterpropagating and the third (of frequency
@+ 5) makes a small angle with one of the others. The frequency w is a nearly resonant (inside the
Doppler width) with the a-b transition frequency. The phase-conjugate signal emitted at frequency
w—90 is calculated as a function of 8. Using a simple collision model in which collisions are phase
interrupting in their effect on atomic coherence and velocity-changing in their effect on level popu-
lations, we discuss the conditions under which resonances characterized by the upper or lower radi-
ative and collision rates can be observed. Assuming that the total (a + b) state population is con-
served in the absence of collisions, it is shown that velocity-changing collisions can “open™ the sys-
tem and lead to a resonance characterized by the lower-state width (convoluted with the residual
Doppler width). With increasing pressure, the width of this induced resonance structure decreases
monotonically. For sufficiently high pressure, the collisional redistribution of velocity classes is
complete—the system ‘“recloses” and the narrow resonance disappears. The interplay of the
collision-induced opening, line narrowing, and reclosing of the system is discussed, as is the rela-
tionship of these narrow resonances to the so-called pressure-induced extra resonances of Bloember-

e e =y

gen and co-workers [Indian J. Pure Appl. Phys. 16, 151 (1978); Phys. Rev. Lett. 46, 111 (1981)].

I. INTRODUCTION

The phenomenon of pressure-induced extra resonances
observed via four-wave mixing is a subject area that has
received a great deal of attention following its prediction'
and experimental verification” by Bloembergen and co-
workers. Both theoretical and experimental develop-
ments in pressure-induced resonances have been reviewed
recently.’

Pressure-induced resonances refer to resonant struc-
tures that appear only in the presence of collisions. They
can be observed under a wide variety of experimental
configurations. To observe pressure-induced resonances
via four-wave mixing in a “two-level” atom, three laser
fields having frequencies w, w, and ©w+ 6 may be used. As
the detuning § is varied, the pressure-induced resonances
appear as structures centered at §=0 with linewidths
characterized by the spontaneous decay rates of the two
levels. When one of the transition levels is the ground
state, it is possible to observe very narrow rescnances,
whose widths are limited by transit time or residual
Doppler broadening.

Most theoretical treatments of the problem have been
restricted to homogeneously broadened atomic samples
or to situations in which the atom-field detunings are
much larger than the Doppler width. Many of the exper-
iments were carried out for this range of detunings. In
this limit atoms in all velocity subclasses essentially con-
tribute equally to line-shape formation. If the atom-field
detunings are less than the Doppler width, atoms which
are Doppler shifted into resonance with the field are pref-
erentially excited. The physical interpretation of the
four-wave mixing signals differs significantly for nearly
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resonant fields (detuning less than the Doppler width)
than for the large-detuning case.

There have been a number of experiments carried out
with nearly resonant fields.**> A theoretical analysis of
these experiments, including effects of velocity-changing
collisions and residual Doppler broadening (owing to a
slight angle between two of the beams), has not been car-
ried out to our knowledge. Lam et al.’ did discuss the
effect of velocity-changing collisions but did not include
the residual Doppler broadening. Rothberg and Bloem-
bergen® discussed the collisional narrowing of the residu-
al Doppler broadening of the resonances (for the highly
detuned case), giving the expected dependence of the
resonances’s width and amplitude on perturber pressure.
Most other theoretical approaches neglect the residual
Doppler broadening and treat collisions solely by the in-
troduction of a number of collision rates.

It is the purpose of this paper to analyze collision-
induced features that may appear in four-wave-mixing
line shapes. We consider a two-level atom subjected to
three fields having frequencies ©, w, w+8 and calculate
the signal emitted by the sample at frequency w--8 as a
function of 8. The atom-field detuning A=w—ay (w, is
the atomic transition frequency) is less than the Doppler
width associated with the transition.

In particular, we examine in detail the conditions un-
der which one can observe resonances characterized by
the natural widths y, and y,, associated with the lower
and upper transition levels, respectively. In the limit that
a is the ground state, it will be seen that a resonance with
width ¥, can be observed only when the system is “‘open™
(population not conserved). Velocity-changing collisions
provide a mechanism for opening the system. The total
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population of each atomic velocity class need no longer
remain ‘“‘closed” when collisions are present, even if the
total (velocity-integrated) population does remain closed.
Thus, velocity-changing collisions contribute directly to
the resonance having width y,. The resonance having
width y, occurs for open or closed systems, with or
without collisions, for nearly resonant tuning.

Velocity-changing collisions not only lead to the ap-
pearance of the y, resonance, but are also responsible for
the narrowing of the residual Doppler broadening. The
way in which velocity-changing collisions result in open-
ing, collisional narrowing, and the ultimate closing of the
system is explored.

The calculations are carried out in lowest-order pertur-
bation theory, using a highly simplified collision model
(“strong™ velocity-changing collisions for populations;
homogeneous collisional decay for atomic coherence). A
preliminary version of this work has appeared.’

In the first part of the paper we carry out a straightfor-
ward calculation of the four-wave-mixing signal, after
having introduced our definitions of open and closed sys-
tems. In the second half of the paper we analyze the re-
sults, emphasizing the dependence of the ¥, resonance on
the opening, narrowing, and ultimate closing produced
by velocity-changing collisions.

II. CALCULATION OF THE SIGNAL

The system we consider in this paper is a collection of
two-level atoms, interacting in a classical four-wave-
mixing geometry with three laser beams, whose electric
fields are labeled by E, (forward) E, (backward), and E,
(probe), as shown in Fig. 1. Fields E; and E, have the
same frequency  and are counterpropagating (wave vec-
tors ko and —k, respectively), while field E, has frequen-
cy w+90 and has a wave vector k which is directed along
an axis at angle 0 to ky. The | a) (lower) and | b) states
are separated in energy by hw,. Both of them may be ex-
cited levels, although the interesting case, with which we
are mainly concerned, is a closed system in which |a) is
a ground state and |b) an excited state that can decay
radiatively only via spontaneous emission to state |aq).
For reasons that will become clear in Sec. III, we adopt a
slightly modified definition of a closed system. If ¥, and

b
s Ta'

‘yb -‘yb. a
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¥, are, respectively, the radiative lifetimes of |a) and
|6), and y,, is the radiative transfer rate from |b) to
| a ), the system is said to be closed if

Yo=YVpat+Va - m

Condition (1) implies that there is only one decay rate
(which can be zero) for the sum cf the populations of
states |a) and |b). In other words, the total popula-
tion is not conserved within an overall decay constant ¥,
which may differ from zero. If, for example, states {a)
and | b) have the same transit time in the laser beams,
condition (1) could hold with y, equal to the inverse
transit time. The motivation behind this definition of a
closed system is discussed in Sec. I1I.

The atoms form a gas with a classical velocity distribu-
tion, and the internal state of a group of atoms having the
velocity v is described by the density operator p(v). In
the absence of interaction with the lasers, the variation of
plv} as a function of v is proportional to the Gaussian
thermal distribution

1 21,2
W(v)= ——=—e 077" (2)
(uvm)?
where u is the most probable atomic speed.

These atoms are immersed in a buffer ga< of foreign
atoms with no active structure. The active-atom density
is assumed to be sufficiently low that one need consider
only active-atom-foreign-gas-atom collisions. To easily
account for these collisions, we make the classical set of
assumptions which defines the so-called collisional and
radiative impact regime. The validity conditions for the
impact approximation can be stated as®

7. << Q7 Jo—wy] T lw+8—wy| 7!, a)
re<<P Lyyhys !

where 7, is the duration of a typical collision, , is any
relevant Rabi frequency, and I' is a macroscopic col-
lisional rate. In this framework the evolutions under col-
lisional and radiative interactions are decoupled and the
collisions can be simply described by an additional time
derivative in every equation governing a matrix element
Pagv) (@=a,b; B=a,b) given by’

£(K,.w) €p(-K;.0)

T opel ‘

(bl

FIG. 1. (a) Level scheme for the system under consideration. For the laser frequencies @ and (w+8) shown, the detuning
A =(w—ay) is within the Doppler width of the transition. (b} The geometry of the three input laser beams (E, +Ey,E,). The phase-
conjugate signal, E,( —k,w —8), is shown as a dashed arrow.
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= - rg%(v)paﬂ(v)(ﬁaaﬁﬁb +8(lb8Ba )
— Lo vipaav)

+ [ A —Vipggvide', (@)

where A,g(v'—v) is a collision kernel, [ optv)
= f Agplv—vid 3v' is a collision rate, and F,‘;'}; is a (com-
plex) decay rate associated with impact pressure broaden-
ing theories involving phase-interrupting collisions.’
This expression, which accounts for the velocity changes
of atoms during collisions, yields a coupling between
different velocity classes through the collision kernel
A ,g(v'—v). The kernel, which is directly related to in-
tegrals of quantum-mechanical scattering amplitudes, has
no general analytical form.

The resulting equations of motion for p,4(v) cannot be
solved analytically unless we model the kernels in a way
that permits such a solution. To carry out the illustrative
calculations in this paper, we choose <imple forms for the
kernels as fonows.

(1) For the off-diagonal element p,,, we neglect the
contributions from the second and third terms of Eq. (4).
This is a very common approximation, justified when the
interaction potentials are somewhat different for the two
fevels, which is common of atomic optical transitions.’
We keep only a rate of destruction of p,

=T, (v), (5)

coll

d
at Pab(V)

and we furthermore assume that T'? is real and does not
depend upon v.

{2) For the populations p,, we adopt the so-called
strong collision model in which the velocity v of an atom
is thermalized, on average, after one collision, regardless
of the initial velocity v'. The collision kernel is given by

AV =)=, W(v), a=a,b (6)

with I', independent of v.
The equations of motion (in the interaction representa-
tion) for the atomic-density matrix elements, including

J

2,020,
8

Oy = —in (Pap +i(A—8+k-v)]~!

the atom-field and collisional interactions, are

3
5{'+V'v+7b pb(V)
Qv —id
=X, Wv)+ ipa,,(v)z—z—e "4-c.c.
+ T, Wivlp, ,
3 vV+7, |patv)
ot
~ié

=, W(V)+7/b.apb(V)—

. v v
ipg 3 ¢ +c.c.
v

+T,W(vip, , (7)

d .
o, +V'V+7ab—'wu

dt pab(v)

=i[py(V)=pa(V] S T"e""’" ,
where the summation of v applies to the three laser
beams, ¢, =w t—k,-R, Q,.=p, E,/fi (Rabi frequency),
and XA,,A, account for a possible external incoherent
pumping of populations (for a closed system: A,,A, ~0
with A,/y,~n,, unperturbed population of |a)). In

Egs. (7) we have defined
Va=Vat+le a=a,b, (8a)
Voo =3¥a+Vs)+T0 (8b)
ﬁa:fd%pu(v), a=a,b . (8c)

Equations (7) are solved using a perturbative expansion
up to third order in the field amplitudes. Among the 27
contributions to p}}, two correspond to emission of an
electromagnetic wave counterpropagating along the
probe direction, with a frequency w-b and a wave vector
—k (the so-called phase-conjugated emission). The
phase-conjugate contribution to p'3', obtained from a per-

turbative solution of Egs. (7), is’

I8 1 - .
pla]b PC:Uabe‘[(m o +k-R} , (9a)

with

X | W+ RP, —id+itk—Kko) v} ' +(1-R)[7, —i8+ilk—kg)v] ™}

X (7o +i(A—kgV)] '+ [P —i(A+8—k-v)}]7 !}

+ Wiv)

€
rb I“a

+1, |[(1-R)§®, +R

+ (same with kq— —k;) .

,(1+R)E, (7, —i8+ilk—kg)v]™"

[7.—id+itk—kgy)v] !

(9b)

A _— e

e hm—




For the sake of compactness, we have introduced in Egs.
(9) the notations

R=L‘"_ , (10a)
7b_7/a
- r,
F,= 3 ) (10b)
I—T f Wiv)d-v
Pa—ib+ilk—kg)v
3
°§a=f _ -W(\{)d v - - 1
Fa—id+ilk—kg)v | 7, +ilA—kg V)
1
b —i(B+8—k-v)
(10c)
A A oA
ne=t | Ze Yol (10d)
Yo Ya Ya¥s

The intensity of phase-conjugate emission is propor-
tional to the absolute square of

Ea,,=foa,,(v)d3v .

The integration is carried out within the so-called
Doppler limit defined by

VarVerVap <<k, kou , {11a)
FAL, 18} «<ku,kou . (11b)

Condition t11a) is satisfied for pressures <100 Torr.
Condition (11Db) is satisfied for the nearly resonant atom-
field interaction of this problem —it would be violated for
the large detunings | A | >>ku appropriate to many ex-
periments in pressure-induced resonances. As a result of
inequalities (11), one can neglect in (9) both the part of
the first term varying as [7,, —i(A+8—k-v)] ! and the
entire (k,— —k,) term, since, after integration, these
terms are smaller by a factor ¥, /ku than the other con-
tributing terms.

To achieve the three-dimensional integration over v we
choose the coordinate system shown in Fig. 2 with

Gl (12)

J

—A+i¥a
Ku

(l)(l;b =w

, wl},-——w(ga,,):w Kuo

Ku

8+iy,
Ku@

Wy = , g —-w(é‘a)—w

LP_ _A+5+i7ab l
Wyp =W Ku

d+ivy
Kub

, w[:w(g,,)zw

1

2848427, ‘
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FIG. 2. Axes chosen for performing the velocity integration.

NY

For the range of detunings 8 under consideration, we can
set | k| = |kg| =K so that

k'v=Kuz+ngx

ko'v:sz—K—o-vx ,
2
(k—kg)v=K6v, . (13)

Using condition (12), an analytical integration over both
v, and v, can be easily carried out with the result given
by

*
. Q000,

Top=—in g Fu4En ), (14a)

e v
Kuf

— out

i
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Ku6
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r
ah — Wy Wap — W,
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) vV : -
Toh= K—Z (oa,,((ub+w PY1+RYD, —
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—RY —L R
+(1 D“K6w+

(15)

[ -



4344

and the function w(¢) is defined by'°

wlf)=e "gz[l—erf( —i¢)], ¢ arbitrary

. _t?
=Lfee eg_‘:‘ only when Im(£)>0, (16)

where erf($) is the complex error function.

INI. LINE-SHAPE ANALYSIS

The line shape (Eq. 14) may appear to have a rather
complicated structure, but it simply reflects the various
physical processes simultaneously occurring in the vapor.
There is some question as to the best method for analyz-
ing Eq. (14). We chose to use four (related) aspects of the
problem and hope that an overall picture emerges from
these components. (A) First, we consider the line shape
as composed of two contributions —one from atoms have
not undergone velocity-changing collisions and one from
atoms that have. The former category dominates at low
pressure and the latter at high pressure. In this subsec-
tion the resonance positions and widths are discussed.
{B) Second, we examine the conditions under which reso-
nances having a width characterized by the lower-state
spontaneous and collision widths can be observed. It is
shown that the existence of such resonances depends crit-
ically on the departure of the sum density

Stvi=p,(v)+p,iv) (an

from its equilibrium value. In this subsection a natural
definition of a closed system emerges. Moreover, it is
seen how the system opens and recloses with increasing
peturber pressure, and how the reclosing is linked to the
collisional narrowing of the lower-state resonance. (C)
Third, we examine briefly the dependence of the reso-
nance characterized by the upper-state spontaneous and
collisional decay processes. (D) Finally, we summarize
the various line-shape features and give several examples
of typical line shapes at various pressures. In Sec. IV the
relationship of these line shapes to the pressure-induced
extra resonance of Bloembergen and co-workers'? is not-
ed.

A. Line-shape resonances and widths

In the context of the strong collision model, the line
shape naturally appears as composed of two terms: o3y,
associated with atoms that have not undergone velocity-

n

changing collisions, and o}, associated with atoms that
have.

1. Atoms not having undergone velocity-changing collisions

The contribution from such atoms is dominant at low
pressure when collisions are relatively infrequent (in this
case ol /oy is of order T /ku). For these atoms, the
line shape results from the integration over velocity of a
component o op(v} which consists of the product of three

factors as follows:
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1 ]
Voo +i(A=8)+ik-v ¥,—id+ilk—ky)v
—t
7ab +iA—ik0'V

ngl(\'):

, a=a,b . (18)

The third factor represents a single-photon absorption of
the forward pump beam; the secord fact~- . .lects the
evolution within state |a), that .., thc piobability that
the grating formed by the forward pump and probe
beams is not affected by velocity-changing collisions; and
the first factor represents a ‘‘three-photon” p:scess in-
volving the absorption of one for~ ui1a and one backward
pump photon and the emission of a probe photon.

When integrated over velocity, the first and third fac-
tors give rise to a resonance centered at 8=2A with
width [full width at half maximum (FWHM)] 47_,. This
resonance results from a velocity-selective process in
which the same velocity classes of atoms are used in both
the one-photon and three-photon absorption factors. The
second factor in (18) gives rise to ‘‘grating resonances”
centered at 5=0 with widths that we write symbolically
as

I (a)=027,)%(Ku#b) (19)

representing the convolution of a Lorentzian having
width 27, with a Gaussian having a characteristic residu-
al width (Ku@) (the FWHM of the Gaussian is 1.66
Ku@). For illustrative purposes, we may consider the
case in which

Yy, <<Kub, Kuf<<y, 20
implying that

Te0)~27, =20y, +T,),

Fola)=27,)%(Ku0) .

(21a)
21

The upper state grating has a width 2(y, + I';,) while the
lower-state grating has a width given by the convolution
of 2(y,+T,)and Kuf. Atlow pressure and for small re-
sidual Doppler broadening, the lower-state grating reso-
nance can be much narrower than the upper-state one.
These features are shown in Fig. 3.

2. Atoms having undergone velocity-changing collisions

Any atom having undergone a velocity-changing col-
lision is thermalized. Consequently, any correlation be-
tween the velocity classes participating in the one-photon
and three-photon absorption processes is lost. In analogy
with Eq. (18), the contribution from atoms having under-
gone velocity-changing collisions arises from the velocity
integration (over v, and v.) of a term that can be written
as

U‘u“,,(v)\——“—l_——
7 un HI(A=8)+ike,

L 22)

Van+ib—ikor;

UG(S.Q,L‘X )

where v; and v, are uncorrelated. The factor o ;(8,a,v,)
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is a term that is responsible for a collisional or “Dicke™
narrowing of the grating resonances.!' On averaging
over velocity, the first and third factors give rise to very
broad ‘“‘resonant” structures, characterized by the full
Doppler width.!> The grating resonance associated with
state. @) has a width which starts at
Fela)=Qy )*(Ku6) [Eq. (19)] at low pressure and
monotonically decreases to a final width equal to 2y,
The condition for collisional narrowing to this final width
2Vl

Fo
Kuf >~

If y,>>Ku6, the excited-state grating width (for this
contribution from atoms which have undergone velocity-
changing collisions) is always equal to 2y ,. For the lower
state, assuming y, << Ku 8, the grating width starts at
1.66 (Ku8) for low pressure and reduces to 2y, for pres-
sures such that I') /Ku0>>1.

These line-shape features are shown in Fig. 4. The
contributions from atoms having undergone velocity-
changing collisions become Jdominant at high pressure,
where atoms undergo many collisions within their natu-
ral lifetimes. A quantitative condition for “high” pres-
sure can be written

(23)

T

——>—_@. a=a,b 24)
Va Yas

020

010

SIGNAL (arb, units)

RN

FIG. 3. Four-wave-mixing signal intensity (arbitrary units) as
a function of pump-probe detuning 8. All frequencies are in
units of y,; for the figures shown, A =5.0, Kuf=0.1, Ku= 100,
v.==0.01. The collision rates are taken as [, =T, =40,
P=T,/y, =00, 002, 0.1, 0.2 corresponding to different (di-
mensionless) pressures. At zero pressure, there are resonances
at 5==0and 5 =24 having widths (FWHM) equal to 2.0. As the
perturber pressure increases from zero, this system “opens’™ and
a narrow structure {corresponding to @ ;' of the text) appears
whose width is 2ty, + T, ) convoluted with the residual Doppler
width Kuf). This narrow resonance broadens with increasing
pressure. At these relatively low pressures, only the contribu-
tion from 7 ' is dominant, although the marked asymmmetry of
the P=0.2 dip is due 10 the fact that 7!}, is beginning to make a
non-negligible contribution to the line shape.

JRY DU——

SIGNAL (arb. units)
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T
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100+ p:gQ
2 P:10
7 3P:40
Eoggl,,. 4 P-80
s
s I
2060~
4
9
w
040
020
00 . .
-0 60 -040 -020 00 020 040

[ 20N

FIG. 4. Graphs of four-wave-mixing signal intensity (arbi-
trary units) as a function of pump-probe detuning 8. All fre-
quencies are in units of y,; for the figures shown, y,=0.01,
A=00, Ku6=10, Kku=100, and [,=[,=4TI,, with
P=T./y,=1(0.001, 0.5, 1.0, 3.0, 10y in Fig. 4(a) and P=(4, 10,
40, 80} in Fig. 5(b). These figures are intended to illustrate col-
lisional narrowing and the “‘reclosing™ of the system, which is
why a somewhat larger value of Ku6=1.0 y, was chosen. At
zero pressure the linewidth is the convolution of a Lorentzian
having width 2y, with a Gaussian having width 1.66 Kuf. As
the pressure increases. the system “opens” and the contribution
from @ }}}, begins to become important, leading to a new narrow
resonance characterized by the ground-state width (convoluted
with Kut). (The 75 component giving rise to the narrow dip
seen in Fig. 3 is negligible for the parameters chosen for these
graphs.) With increasing pressure, the “broad™ and narrow res-
onances approach their asymptotic widths 2y, and 2y, respec-
tively, as a result of collisional narrowing. There is a range of
pressures where the ratio of the narrow to broad resonance am-
plitude is approximately constant; at still higher pressures, the
reclosing of the system leads to an asymptotic disappearance of
the narrow resonance. Note that in Fig. 4ib) the scale has been
expanded so that the broad resonance (of width 2y,) appears
only as an approaimately constant background. All curves have
been normalized to the same value at & - 0; in absolute terms,
the signal decreases with increasing pressure approximately as

r
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which states that the number of collisions within a radia-
tive lifetime is large enough to redistribute velocity
selected atoms excited in a range (Ku=1¥,) over the
entire Doppler width Ku. The redistribution inequality
(24} is linked to the reclosiug of the system as is shown
below. A schematic picture of the velocity redistribution
is shown in Fig. 5.

B. Resonances characterized by lower-state radiative
and collisional rates

In order to determine the conditions under which grat-
ing resonances characterized by the lower-state width are

seen, it is useful to recall Eq. (7c) in which one finds that
Papr (V) [pp(v)—p, (V)] . (25)
In terms of the sum density
S(vi=p,(v)+pylv),
expression (25) can be written
Pap(¥V) < [2p,(v)—S(v)] . (26)

Up to second order in the fields, p,(v) depends only on
the excited-state parameters. Thus, any contribution to
Pap in third order in the fields which depends on the

&S

FIG. 5. Schematic representation of the opening and reclosing of the system in velocity space. The graphs shown in each of (a),
(b), and (c) give the longitudinal velocity distribution for state a, p,(v), for state b, p»(v). and the deviation 8S(v) of the sum density
[Pa(¥)+p,(v)] from its equilibrium value in the abscnce of applied fields. (a) At zero pressure, excitation and decay occurs within a
given velocity class and 85(v) =1, assuming that the system i- “closed,” as defined in the text. (b) With increasing pressure, collisions
redistribute some of the velocity-selected atonis over the entire thermal width. For different collision rates in the two states, the
closed nature of the systear is Tost, s is evidenced by a nonvaiishing 8S(v). (¢) At very high pressure, such that the redistribution in
cach level is complete, the system has “reclosed.” and. as at zero pressure, once again finds S =0. In this limit, there is no longer
any velocity selection and excitation and decay occurs over the entire thermal distribution. In each diagram, the dashed curve corre-
sponds to the equilibrium distribution p_tviin the absence of the fields. The upward arrows represent excitation by the ficlds, the
downward curly arrows represent radiative decay, and the sideways arrows represent selocity redistribution.
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lower-state decay rates must come from a second-order
nonvanishing contribution to S(v). The sum density
serves as a measure of resonances characterized by the
lower-state decay rates.
To zeroth order in the fields, the sum density calculat-
ed from Eqgs. (7) is
S(Oi(v):&a__*_ﬂl’ﬂ__}_ﬁ

. (27)
Ya Yo Ya 14

To second order in the fields, the sum density contains
contributions from all combinations of two of the fields.
The part of $'2(v) responsible for phase-conjugate emis-
sion may be written

iftk—koHR - b1

[S2(V)]pe=S"(v)e +e.c. (28)

When this is substituted into Eq. (7), one finds that
§'2'(v) satisfies
[7,—i8+i(k—Kky)v]S'Z(v)

:—(yd+rd)p‘,,2’++fAd(v’—-v)p',,z,w’)d v

+an(v’«>v)S‘f'lv’)d3v' , (29)

where
Ya=Ys—Vha—¥a> (30
Fg=Ty—T., 31
Ay —>vI=A,(V—>v)— A (V—>v), (32)

and p;, (v) is the second-order component of p}?'(v)

which contributes to the phase-conjugated emission. If
S'7'(v) vanishes, the line shape to third order cannot de-
pend on the lower-state decay rates. Thus, the existence
of resonances characterized by y, or [', depends on a
nonvanishing $'2'(v).

If there are no velocity-changing collisions [[,=0,
A (v'—v)=0], S'¥(v) vanishes only if

Ya=¥p—Vha—Ya=0. (33

Equation (33) is the condition (1) we adopted for a closed
system, since it implies no deviation from the zeroth-
order sum density. In the following discussion, we as-
sume that (33) holds. In that case, S'2'(v) satisfies

(7. —i8+i(k—kg)vISP(v)— [ 4, (v'—v)S'P(v)d %’
=T+ [ A,V —viplivid' . (34)

[t is seen that all inhomogeneous terms in Eq. (34) van-
ish if the collision kernels for the two states are identical.
This result is independent of the specific form of the col-
lision kernel, and is not restricted to the strong collision
kernel used in this work. For identical collision kernels,
I',=0, $'(v)=0, and there is no opening of the system.
This result is easy to understand. For identical kernels,
collisions redistribute atoms in all the velocity classes in
the upper and lower levels in the same manner, on aver-
age. This implies that the total population of each veloci-
ty subclass is dynamically conserved and the system
remains “closed.” Thus, the existence of resonances

characterized by ground-state decay rates necessarily de-
pends on a difference between the upper- and lower-state
kernels [assuming, as we do, that condition (33) or (1)
holds]. This conclusion is illustrated in Fig. 6.

If I';5+0, at low pressure the system ‘‘opens” as a re-
sult of velocity-changing collisions and narrow reso-
nances can be seen (if they are not masked by the residual
Doppler broadening, that is, if Ku6<y,). As the pres-
sure increases to the point when condition (24) is applic-
able, the velocity distributions in both ground and excited
states are rethermalized, p,(v), p,(vic W(v). In this
limit, it is easily seen from Eq. (34) that S'Z(v)=0, i.e.,
the system has reclosed. In going from low to high pres-
sure, collisional narrowing of the lower-state grating res-
onance can be seen.

It can be shown from Eq. (34) and the second-order
solution of Eq. (7) for p}*(v) that the amplitude of that
part of S'?(v) which contributes to the resonance having
width equal to [2(y, + collisionally narrowed residual
width)] is proportional to (Ku8)?/T",7,. This is precisely
the same factor that determines the collisionally nar-
rowed residual width (see below). Thus, the degree of re-
closing of the system is interrelated with the collisional
narrowing of the system.

C. Upper-state grating resonance

At low pressure, the upper-state grating resonance has
width T';(b)=(27,)%(Ku0)~27, if Kuf <«<¥,. This is
the contribution from atoms which have not experienced
velocity-changing collisions. As the pressure grows,
eventually reaching the limit (24), the term arising from
atoms having undergone velocity-changing collisions
dominates the line shape. This term has width equal to

27,-
D. Line-shape summary

At low pressure, the line shape is determined by atoms
that have not undergone any collision. There is a reso-
nance of width 47, centered at §=2A and one of width

020 T 1 T T T W

015

010

SIGNAL (arb. units)

Q05

FIG. 6. Graphs similar to those of Fig. 3, but with [, ==T .
In this limit of equal collision rates for the two levels, the sys-
tem never “opens” and the narrow resonance is not seen.
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(27, )% (Ku0) centered at 6=0. If the system is “‘open,”
owing to I';5£0, there is an additional narrow resonance
centered at §=0, having width (27,)*(Ku@). These
features are illustrated in Fig. 3. As the pressure grows,
the no-collision terms (7 %}') broaden and diminish in (rel-
ative) amplitude. The major contribution begins to come
from atoms that have undergone velocity-changing col-

-

Q.00 .
- L REf b, _ —
oab=—pr FH+TN),

1
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lisions. The resonance at §=2A vanishes and the reso-
nances centered at 6=0 have widths which reduce to-
ward their asymptotic values of 2y, and 2y,, respective-
ly.

At “high” pressure, such that I' ,,,I",, T, >>(Ku6) and
L, >>7,, Ty >>v,, the line shape takes on the asymptot-
ic form

_ vV
T — (E (0f +w@h

Ya+Ty

2y +T ) +2iA—i8 yy+T,—i8

‘/— 2
I m
5= |37 ot ottty

1

Ay, +T,—id)y,+T,—i8)

L (Kub?
2T,

Yo id

where for convenience, we recall that y, and I'; are
defined by

Yd=Yb_Yh,a ~%Ya >
rd:Fb—r“ .

From Eq. (35) one easily verifies that the redistributed
component &}, dominates as soon as

(Vab+rab”l77

, 36
Kuy, >> 1 (

which is condition 124) arrived at in Sec. II1 A, using sim-
ple physical arguments. The narrowing of the line shape
can be seen in T, where the widths of the dominant
terms are given by [y, +(Ku6)*/2I ), a=a,b. More-
over, for a closed system as defined by condition (1)
(y4=0), the amplitude of the state |a) (lower) reso-
nance asymptotically approaches zero ifer any finite
Ye#0) as (Ku0)2/2T",y,. This is the same factor that
determines how the resonance width approaches its
asymptotic value y,. In other words, when the narrow-
ing is complete, the system is also reclosed and the nar-
row resonance disappears.

It is interesting to note that as long as
(Ku6)2/2T, > v,, the narrow resonance keeps a constant
amplitude with respect to the y, peak, as can be seen in
@ ' rewritten as

(Ku#)?
i 1 2y | e r,
Tgp™> "5 - — -
’ (Ku6y T, (Ku0? o
5™ or, ar, !

(35a)
vat Ty (35b)
Yo+, —i8 ’
ry,
y,,+l',,—18
1 (Ku)?

N (Kuo)? . ‘yd—(l—R) 2L, T, Fd) J , (35¢)

Ya ZF —1

a

f
For y, <<, there is a wide range of pressures for which
the ratio of the amplitudes of the resonances associated
with states | o) and | b) remains constant. The ratio of
amplitudes is governed by the ratio I',/I,. These
features are shown in Fig. 4.

1V, DISCUSSION

In this paper we have examined the phase-conjugate
four-wave-mixing signal that is produced when three
nearly resonant (detunings within the Doppler width of
the atomic transition) fields having frequencies w, w, and
©+d are incident on an ensemble of two-level atoms.
The two fields having frequency w are counterpropagat-
ing and the third field makes a small angle 8 with one of
these fields. We have seen that for a system which is
“closed” in the absence of collisions [i.e.,
(Yo —¥bo—~7a)=0, see Fig. 1], velocity-changing col-
lisions can play a critical role in determining the strength
of the phase-conjugate emission as a functinn of 8. In
particular, thesz collisions are responsible for the detailed
structure of the “Rayleigh-type” resonances which ap-
pear, centered at §=0. In the absence of collisions, the
8=0 resonance has a width equal to 2y, (convoluted
with the residual Doppler width Ku8). At low pressure
this width is increased owing to velocity-changing col-
lisions. Moreover, since velocity-changing collisions
“open” the system for each velocity subclass, a new reso-
nance centered at =0 having width 2y, (convoluted
with Ku#@) appears. If v, <<v,, this new resonance can
be much narrower than the resonance of width (2y,) in
the absence of collisions. As the pressure increases, col-
lisional narrowing of the residual Doppler width of the
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resonances occurs and the resonance widths decrease
monotonically towards their asymptotic values of (2y,)
and (2y,), respectively. At the same time, the system is
“reclosing” since collisions are redistributing the
velocity-selected atoms over the entire Maxwellian veloc-
ity distribution. When the system is fully reclosed, the
y, re.onance disappears, just as in the absence of col-
lisions.

It seems useful to emphasize that, although they occur
simultaneously and are related to the same residual
widths (Ku 8)2/2T,, the collisional narrowing and the re-
closing are two different phenomena. Collisional narrow-
ing occurs only because there is a spatial phase factor
which enters in the line-shape formation. In “tradition-
al” collisional narrowing, the phase factor is associated
with an atomic coherence (optical or otherwise) and the
narrowing can occur when the collisions reduce this
atomic mean-free path to the point where it is less than
the wavelength needed to excite this atomic coherence.
In the present case, however, the relevant phase is that of
the population gratings created within a single level by
the lasers. Line shapes which are collisionally narrowed
have widths which asymptotically approach their homo-
geneous widths, with a residual component that decreases
as (Av)?/T, where Av is the relevant inhomogeneous
broadening and [ a collision rate. The population grat-
ings discussed in this work are spatially modulated in the
transverse direction. Consequently, the narrowing occurs
relative to that direction, with a corresponding inhomo-
geneous width equal to Ku 8.

In contrast to the collisional narrowing, the reclosing
of the system does not depend intrinsically on the ex-
istence of a spatial phase. The reclosing is simply related
to the velocity distribution within each level. The radia-
tion fields create a nonequilibrium velocity distribution in
each level and collisions tend to restore the atoms to
equilibrium. The system recloses when the collision rate
is much larger than the radiative transfer rate [see condi-
tion (36)]. The reclosing occurs not only for the popula-
tion gratings discussed above, but also for the nonmodu-
lated parts of p, and p,. Moreover, it occurs in the longi-
tudinal as well as in the transverse directions. It can be
easily shown that the sum density S(v) which measures
the degree of openess of the system, tends to zero with in-
creasing pressure asymptotically as [(1/T,)—(1/T,)]
for all its components, modulated or not. On the other
hand, for the population gratings, there is a dependence
of the reclosing on Ku 6 which is absent for the unmodu-
lated component of the population. One may say that, at
high pressure, there is an additional effective lifetime
(Ku8)2/2T, for the population grating associated with
state |a), so that condition (1) defining a closed system
is replaced by

(Ku@)? (Kuf)?
G, = — _
d Vb + 2rb Yb.a lYa + zra l
_ (Kuf)y .
—Y,,+ 2rarb rd——() .

It is precisely this factor G, which enters the expression
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for the amplitude of the narrow peak in &,. In sum-
mary, we see that although the amplitude of the narrow
peak is determined by the factor (Ku6)?/2I', {and
(Ku8)?/2T", ], and the residual width of the narrow peak
is determined also by the same factor (Ku8)?/2T',, the
origin of these two effects is different.

The collision-induced resonant structures discussed in
this work differ somewhat from the pressure-induced ex-
tra resonances (PIER4) studied by Bloembergen and co-
workers."? In PIER4, the atom-field detunings were al-
ways outside the Doppler width of the transitions. As
such, velocity-changing collisions played no role in the
opening or closing of the system, as defined in this paper.
Moreover, there is no velocity selection in the excitation
process since all atoms are detuned well outside the
Doppler width. As a consequence, there is no resonance
centered at =0 in the absence of collisions for a closed
system. A resonant structure centered at 6=0 having
width 27, (convoluted with Ku 8) appears and grows with
increasing perturber pressure, but no resonant structure
with width 2%, (convoluted with Ku 8) emerges, since the
system remains closed for each velocity subclass (as there
is no velocity selection in the excitation process). In con-
trast to these results, for nearly resonant tuning (detuning
within the Doppler width), resonant structures centered
at §=0 always exist, even in the absence of collisions.
The overall amplitude of these resonance structures de-
creases with increasing pressure, in contrast to PIER4.
Moreover, again in contrast to PIER4, collisions lead to
an additional resonance having width 2y, (convoluted
with Ku 8), owing to the fact that velocity-changing col-
lisions open the system for each velocity subclass. The
differences between PIER4 and four-wave mixing using
nearly resonant tuning can be traced to velocity-selective
excitation which is present in the latter and absent in the
former.

Finally, we should like to comment on the experimen-
tal implications of our work. Several studies of the role
of velocity-changing collisions on four-wave-mixing line
shapes for nearly resonant tuning have been carried out.’
Many of the features predicted in this work have been ob-
served in those experiments (pressure-induced narrow
resonant structures centered at 8 =0, collistional narrow-
ing), but a quantitative comparison with theory has not
yet been attempted (the theory must be extended to in-
clude effects of magnetic degeneracy or the experiments
will have to be done using an atom other than sodium®).
A systematic experimental study of the collisional
modification of rour-wave-mixing line shapes for nearly
resonant tuning in Na is in progress,’’ and it is hoped
that this study will serve as a test for the theory.
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We calculate the two-level pump-probe absorption coefficient including both upper-to-lower-level decay and level
decays to a still lower-lying reservoir level. The probe-absorption profile can have arbitrary ratios of the natural
linewidth and detuning to the Doppler width. We observe and explain new line-shape features that occur when the
two main levels decay to the reservoir level at different rates.

1. INTRODUCTION

Pump-probe spectroscopy is a technique that has been used
in high-resolution spectroscopy to obtain information about
physical properties of atomic systems. Inastandard pump-
probe experiment involving a single atomic transition, one
measures the probe-absorption profile when an arbitrarily
strong pump field drives the same transition. In the past,
calculations of probe-absorption profiles have been per-
formed by several groups.! 10

A detailed theoretical investigation of the probe-absorp-
tion line shape including coherent effects was undertaken by
Baklanov and Chebotaev' and by Haroche and Hartman.?
The probe-absorption line shape can be calculated by evalu-
ating the probe-field-induced dipole moment using master
equations in which the pump field is treated to all orders.
Previous calculations have been performed for stationary
atoms® %% or for moving atoms in the so-calied Doppler
limit (Doppler > decay rates).!?

Absorption spectra for strongly driven stationary atoms
exhibit the interesting phenomena of probe-field amplifica-
tion® "% at certain probe-field detunings from resonance.
This negative absorption occurs with no population inver-
sion and has been investigated by several authors.t7H1!
Doppler-limit calculations for unidirectional! and opposite-
ly* traveling waves and moving atoms have been carried out
by Baklanov and Chebotaev (no probe amplification was
predicted). Experimental curves obtained by Wu and co-
workers” using an atomic beam agree with the stationary-
atom theory for both zero*® and nonzero® pump detunings.

The present paper extends these calculations to allow for
arbitrary ratios of natural linewidth and detuning to the
Doppler width. This theory accounts for contributions
from all velocity subclasses of atoms not only those that are
Doppler shifted into resonance (Doppler limit). We also
include both upper-to-lower-level decay and level decays to
a reservoir level. By including them we are able to obtain
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new line-shape features when the reservoir decay constants
differ. Asin the references mentioned above, our treatment
is semiclassical, that is, the fields are treated classically, and
the atoms are treated quantum mechanically. The effects
of one or two quantized probe waves and a possible Lorentz-
ian broadening have been studied by Sargent et al.!? and
Holm et al.?3 Their coefficients reduce to the present semi-
classical absorption coefficient for stationary atoms and for
corunning waves in the Doppler limit.

Expanding the solution in powers of the pump-field inten-
sity, one can predict the appearance of a narrow resonance
(characterized by the lower-level width) for different combi-
nations of level- and dipole-decay rates. This resonance is
closely related to the pressure-induced extra resonance in
four-wave mixing (PIER4) resonance predicted by Bloem-
bergen et al.!*15 in four-wave mixing and studied by a num-
ber of groups.!6.19-24

2. PROBE-WAVE ABSORPTION COEFFICIENT

We consider a medium subjected to a saturating wave of
frequency v and study the transmission of a weak (nonsa-
turating) probe wave of frequency v, as diagrammed in Fig.
1. We assume that the saturating-wave intensity is constant
throughout the interaction region, and we ignore transverse
variations. Our (wo-wave electric field has the form?*

vl . ~
E(r,t) = g z:; Gorlexpli(K, - r —v,t)] + c.c., (1

where the mode amplitudes 6 ,(r) are in general complex and
K, are the wave-propagation vectors. This field induces the
complex polarization

LS, (mexplitK, - 1 - n,0)] + c.c.

P
n=1

P(r, t) = (2)
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Fig. 1. Basic probe-saturator saturation spectroscopy configura-
tion.
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Fig. 2. Spectrum of the multiwave fields used in this paper. The
probe wave has frequency », and is taken to be weak (nonsaturat-
ing), while the v, wave may have an arbitrarily large intensity.
Pump-scattering off-population pulsations induced by the pump-
probe beat frequency induces a polarization at the frequency »;.
This component couples weak modes in three- and four-wave mix-
ing.

where P,(r) is a complex polarization coefficient that yields
index and absorption or gain characteristics for the probe
and saturator waves. The polarization P(r, t) in general has
other components, but we are interested only in those given
by Eq. (2). For example, in homogeneously broadened me-
dia, strong wave interactions induce components not only at
the frequencies v; and vz, but at v; £ k(v — 1) as well, where
k is an integer. To distill the components ?,(r) out of P (r,
t), we can use the mode factors exp(iK, - r), provided that
they differ sufficiently from one another in distances for
which the amplitudes vary noticeably. For nearly parallel
(or parallel) waves, the mode functions do not vary suffi-
ciently rapidly, and one must separate components by their
temporal differences, for example, by heterodyne tech-
niques. In this configuration, the conjugate wave at the
frequency v3 = vo + (vy — »;) is phase matched and builds up,
involving a somewhat more complicated calculation than
that given in this paper (Fig. 2).

The problem reduces to determining the probe’s polariza-
tion P,(r), from which the absorption coefficient is deter-
mined from the equation

_ KPP,
€6,

o 3
One might guess that this absorption coefficient is simply a
probe Lorentzian multiplied by a population difference sat-
urated by the saturator wave. However, an additional con-
tribution enters because of population pulsations. Specifi-
cally, the nonlinear populations respond to the superposi-
tion of the modes to give pulsations at the beat frequency

A=y, — . (4)

Because we suppose the probe does not saturate, the pulsa-
tions occur only at A, a point proved below. These pulsa-
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tions act as modulators (or like Raman shifters), putting
sidebands onto the medium’s response to the v, mode. One
of these sidebands falls precisely at vy, yielding a contribu-
tion to the probe-absorption coefficient. The other side-
band would influence the absorption at the frequency v3.

In this section we derive the complete nonsaturating
probe-absorption coefficient for the expanded two-level
scheme depicted in Fig. 3. This scheme is sufficiently gen-
eral to include the standard excited-state configuration used
in typical laser media as well as the upper-to-ground-lower-
level decay scheme often used in saturation spectroscopy.
In particular it allows us to consider the effects of differing
decays v, # 75, which lead to resonances analogous to the
PIER resonances in the work of Bloembergen et al.14.15

The calculation is a semiclassical version of the corre-
sponding two-mode quantized field case given in Refs. 12
and 13, here including possible Doppler shifts due to moving
atoms. The polarization P(r, t) of Eq. (2) is given in terms of
the population matrix by

P, t)=p [ doW(v)p,,(r, v, t) + c.c., (5)

where W(v) is the velocity-distribution function. The equa-
tions of motion for the population matrix are

J .
(& +v. V)pab =—(iw + v)pgp

+ih7'Y (2, D)oy = o)y (6)

a
(5 tv- V)paa = Agpee = (Yo + Tog,

— (7Y, 04, + c.0), )

4
(& +v- V)pbb = Appee t Toaa = Yobos

+ (ih_l‘\/abpba + C.C.), (8)

[

Fig. 3. Three-level atomic-energy-level scheme that treats purely
excited-state interactions as well as upper-to-ground lower-state
interactions in a uniform way.
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a
(éz +v. V)P“, = ‘(Au + Ah)p('v + YoPbh + YaPaa:

(9)

Asshown in Fig. 3, A, and A, are pump constants from level ¢
to levels a and b, respectively, v, and v, are the correspond-
ing decay constants, I' is the decay constant from level a to
level b, and ~ is the dipole-decay constant given by (v, + v»
+ I')/2 + v n, where v,n is a possibly nonzero contribution
due to phase-interrupting collisions. In addition, we have
the trace condition

Paa + Poh + P = L (10)
Using Eq. (10) and the steady-state solution of Eq. (9), we

can eliminate p.. from Egs. (7) and (8) and eliminate p,, from
Eq. (8). For example, we have the relations

Pee 1- Paa — [(Au + Ab)py( - 7(,/)”“]/’7[;

Yo ;tf’uui(;yh 7— }l",),
1, A+ A

This reduces Eq. (7) to

a , 1

5 tv-v Paa = )‘u T Ya Pan T (lh vabphu + C.C), (11)
where

Aa(‘y - 7()
7a/=7(x+r+77””7{, S (12)
Yot ALt Ay
Arn‘Yb

L= - . (13)
Yot A, A,

Similarly for the lower-level population py,, we find

(a% T V)”hb = N = oy (TR V gy + cC), (14)

where
Ty, + A, + A+ Ay, — v
v =y, RO AR L (15)
Yot AT Ay
Avy, + T(A, + A})
h=1h~{u i { ”h. (16)
Yot AT A,

Hence the population-matrix equations of motion (6), (11),
and (14) have the same form as those for gas-laser theory but
include a more general excitation-decay scheme. In this
paper we consider mainly two limiting cases of this excita-
tion-decay scheme. In the upper-to-ground-lower-level de-
cay configuration, vy, = ¥, = 0, and the A, and A, depen-
dences in Egs. (12), (13), (15), and (16) drop out, giving v,” =
v =T, A =0, and A\, = I'. For the excited-state cases
considered in this paper, we can neglect A, and A, when
compared with the decay rates, since the reservoir-level p,,
probability is then assumed to be much larger than the
excited-state probabilities p,, and pn,. This assumption
givesy, = v, + I A = Ay = v(1 + I'/y,), and Ay = Ay +
(A, + A/, A nice feature of this three-level model is
that it allows one to move continuously among various limit-
ing cases.
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The interaction energy-matrix element V,;, corresponding
to Eq. (1) is given in the rotating-wave approximation by

2
V= - ’; S 6, (expli(K, - ¥ = r,0)]. (17)

n=1

To determine the response of the medium to this multi-
mode field, we analyze, using a Fourier transform, the polar-
ization component p,;, of the population matrix as well as the
populations themselves. We have

Par = N expl[i(K;-r — »,t)]

X > Pnerexplim|(K, —K)) -r - Atll, (18)

Sy
where the unsaturated population difference

)‘a )‘b
N= o, (19)

70’ 'Yb’
The population-matrix elements p,, have the corresponding
Fourier expansions

p.. =N Z nexpl—k[(K,—K)- r—Atll, a=a,b.

hk=—x

(20)

It is further convenient to define the population difference
D(r, t) with the expansion

D(r, t) = poo(r, £) — pyy(r, t)

=N z dy expi—ik[(K, — K|} - r = At]}, (21)
h=—o
where dy = nox — np,. We now substitute these expansions
into the population-matrix equations of motion and identify
coefficients of common exponential-frequency factors. We
suppose that &, does not saturate, that is, it appears only
once. We show that in this approximation that only py, ps,
and p; occur in the polarization expansion [Eq. (18)] and
that only dy and d., appear in the population-difference
expansion [Eq. (21)]). Physically this simplification occurs
because once a product of §; and & creates the pulsations
dyi, then only &, can interact. One obtains the polarization
sidebands of », at frequencies vy and vy, which subsequently
combine with . only to give back d;, components.
We calculate the coefficient of exp(iK; - r — irst) for the
saturator wave by neglecting the nonsaturating probe field.
We find

iv-K, = v))py = —(iw + )P, — i(26,/20)d,,

that is,
p. = —ilp/2M)6,D.d,, (22)
where the complex denominator ¥, is the n = 2 case of
1
DTy bt v, ) T §*+'1'(A,,1'+ vok) %Y
where the mode detuning
A, =w—u, (24)
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The coefficient of exp(iK, - r — iv;t) for the probe wave
includes an extra term, &2d;,

iv-K, — v)p, = —(iw + Y)p, — i(p/20)[6 ,dy + 6,d)],
giving

Py = —i(p/2h)D,[6,dy + 6,4, (25)

’
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where A’ is given by

AN=4a-v-(K,~K) (34)
and where we have used the fact that d_;, = d;*. For co-
running waves, A’ =~ A, since Kov &~ K,v. Similarly ny, is

given by n,; by changing sign and replacing D, by D/, given
by

Yo+ Ay + A, + itV

D, = . . . . —.
b (v + 1A (Y, )+ A(y, HIA) + Ay(y, + i A) + (v, + A+ Ay + AT

The extra &yd, term gives the scattering of &, into the &,
mode by the population-pulsation component d,. pg re-
mains zero when only dp and dy, are nonzero, since it is
proportional to &d}, involving at least two &;’s.

The component p; does have a value, namely,

Py = i(p/20)D,6,d_,, (26)

in which K; = 2K, — K|, while p;>3 vanishes since d->1)
would be involved.

We calculate the dc-population-difference Fourier com-
ponent dy = nguo — ny saturated by the saturator wave 6,
alone. Substituting Eq. (20) into Eq. (11), we have

0= XN/N ~v,'n,+ |i{26,/2h)p,* + c.c),
yielding with Eq. (22)
oo = N/NY, = 2y, 7) p6 /R L od,, (27)
Here £, is the dimensionless Lorentzian
Li=7/[yV 4+ (w+v-K,— ). (28)

The &, contributions are ignored, since we assume that &
does not saturate. The dc-population component ny is
given by Eq. (27) with @ — b and a change of sign. This
gives the population-difference component

dy=-1-1,L.d,
that is,
d,=-1/(1 + I,£,), (29)
where the dimensionless intensity

I, = | p&,/hI*T Ty, (30)
T, = 1/~ is the dipole lifetime, and T is the population-
difference lifetime:

=1L+ 1) (31)
2 Ya Yo
Proceeding with the population-pulsation terms n,y, ns,
and d,, we have
I8N, = =7/ ng + i(2/20)[6 p,* + €,p5" — 6,*py),
giving
gy = =D (AN p/2h)(6,6," (D + Dy*)dy

+16,%(D, + 0,4, (32)
where

(35)

Solving for dy = n,, — np1, we have
_ [DAA)Y + DA PR/20)26 ,6,*(D | + Dy*)d,
' 1+ 16,/202[D (&) + Dy(AN(D, + D3*)

(p/h)26 ,6,* T\ T, (A) % (D, + Dy*)
1+ L) % (D, + Dyg*)

where the dimensionless complex population-pulsation fac-
tor

F(A) = QT MDA + Dy(A)). 37

This factor approaches unity as A” — 0.

Our calculation is self-consistent, since only dgand d can
obtain nonzero values from p,, ps, ps, and vice versa. Com-
bining the pulsation component [Eq. (36)] with the polariza-
tion component [Eq. (25)}, setting #, = 2pNp, and using
Eq. (3), we find the complex absorption coefficient

g

o [ dowio) P
“ "j 1+ 1,4,

Iﬂ(A/)% (D, + Dy*)
x]1- ) (38)
1+ LFA) % (D, + Dy¥)

where the homogeneous-broadening linear absorption coef-
ficient «y is given by

K\Np®
(YO = _ﬁGOT . (39)

Equation (38) has the sume form as previous derivations but
applies to the more general level scheme of Fig. 3 and can be
used to calculate probe absorption hy Doppler-broadened
media with a probe wave propagating in any direction with
respect to the sa.urator wave.

The general formula {Eq. (31)] for the population-differ-
ence decay time T and the corresponding population-pulsa-
tion factor F(A’) simplify in the limits of the pure two-level
system (p. = 0), and excited-state systems such that o, =~ 1,
while pug, pos «< 1. For the latter, we note that since the
pump and decay probability flows have the same general
size, yq and v, 3 Az and A,. Hence Eq. (31) reduces to

Yot Ag+ Ay +id

D =

T (v Ay, + D)+ Al + A+ Ay, + D) + (v, A, + A, +IA)T

(33)
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=1 1 [141), (40)
2 Ya +T Yo
and Eq. (37) reduces to
1 1 Yo +id
FA) = — 1+ - . 41
(& 2T, ~,a+l‘+iA’( 7,,+m'> “n

The limiting value of T, for a closed two-level system is
recovered by setting v,, v» — 0, such that y,/y, — 1. In
general, if v, = v, Eq. (41) reduces to

1

) = T i

a simple resonant behavior studied in detail in the past.
However if v, # v, Eq. (41) shows that ¥ has an extra beat-
frequency dependence because the level populations decay
at different rates as far as the population difference is con-
cerned. This fact leads to a new kind of special resonance
treated in this paper. Grynberg?-?* and Pinard®! also con-
sidered an extra resonance in two-wave mixing due to radia-
tion decay as well as to collision broadening.

Physically, one can interpret this resonance intuitively by
thinking of the populations as forced, damped, anharmonic
oscillators with a zero-resonance frequency. Because they
are nonlinear oscillators, they respond to the superposition
of two nondegenerate fields by pulsating at the field beat
frequency. If the applied fields propagate in different di-
rections, the nonlinear population pulsations are accompa-
nied by a spatial variation, which is typically called spatial
hole burning or an induced grating. More precisely, the
populations respond to the walking plane-wave field fringe
with the dependence cos[(K» — K;) - ¥ — (v» — »)t]. Since,
unlike the induced dipole, the populations have a zero-reso-
nance frequency, they inevitably lag behind any nonzero
forcing frequency such as the possibly Doppler-shifted
probe saturator beat note A’ of Eq. (34). The faster the
populations decay, the wider their frequency response and
hence the smaller the lag. The T contribution to the level
decays affects both populations in the same way and hence
leads to identical induced gratings for any A’. However, if
Ya # ¥4, the populations lag different amounts as functions
of &’ [compare Egs. (33) and (35)], thereby leading to a
resonance behavior in the population difference.

In addition, the two-level analogs to the PIER resonances
follow from Eq. (38) for v, = v, when evaluated to second
order in the pump amplitude. In this approximation, Eq.
(38) reduces to

@ = j doW)yD,(1 = I,£, — LFA)Y(D, + D,*)/2).
(42)

Combining the complex denominators D, + 0,*, we find

a = a ] dvW(0)yD, [1 — 1,4, - 2D, D,*

€
X1+ ————}| 43
( M+, + iA')] (43)

wheree =2y — I'- y,and x = |p(i«_>/2h| is one half of the
Rabi flopping frequency. Here we see that the A’ depen-
dence of the dipole resonance sum 9; + 0,* cancels out the
A’ dependence given by the population-difference factor
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FA)if I' = 2y and v, = v, = 0, which is valid for pure
radiative decay. This cancellation is imperfect either if
pressure is introduced, causing 2y to exceed T' (pressure-
induced extra resonance), or if the pump is too intense to
permit the use of second-order perturbation theory. In
these cases, we expect to see a beat-frequency resonance.

We refer to the system as closed if there are no population
transfers to external reservoirs (A; = Ap = v, = v = 0) and
there are no collisions. This case occurs for pure radiative
decay from the upper to the ground lower level. This case
satisfies the condition ' = 2y and hence exhibits no A’
dependence up to third order.

As for the v, # vp induced resonance, we can gain some
understanding of the I' # 2y induced resonance in terms of
forced, damped, anharmonic oscillators. Specifically, two
kinds of second-order population pulsation contribute to the
F term in Eq. (42), one starting with a first-order dipole p,
component induced by the probe field and one with a ps,
component induced by pump. The sum of these contribu-
tions produces the complex Lorentzian sum 2, + D,*. This
sum has a phase shift equal to the sum of the individual
phase shifts minus that for the beat note A’ with a decay
constant 2y. The population-difference phase shift also
results from the beat note A’, but with a decay rate T.
Hence, if T" equals 2+, the two phase shifts add to zero. In
effect the population-pulsation response lags as usual be-
cause of the finite temporal response of the population dif-
ference, but this phase lag is canceled by a corresponding
phase lead that is due to the interference between the probe-
and pump-induced dipoles. As soon as these phase shifts
differ, the A’ dependence fails to cancel out. Furthermore,
in higher order, the saturation denominator containing ¥ in
Eq. (38) yields a A’ dependence even when those in the
numerator cancel one another.

Similar results occur in three-wave mixing of two weak
fields and a pump. This mixing includes amplitude- and
frequency-modulation spectroscopy. In our notation, the
coupling coefficient x; appearing in the three-wave coupled-
mode equation (neglecting phase matching)

dé,
FZ— = _al(;l + Xlgzg* (44)
has the value
1D,
X1= "“()jd" W) T 121'2

(PESAYT Y IFA) T (D, + D)
< . (45)
1+ LF ) % (D, + Dy*)

where the conjugate-wave frequency vy = vy + vy — v;. This
result follows by carrying out the derivation above with
three fields in Eq. (1). It is straightforward to see that Eq.
(45) has the same A’ dependences as the absorption coeffi-
cient «; of Eq. (38). For four-wave mixing with counterprop-
agating pump waves, the formulas become more complex.
Homogeneously broadened treatments have been given in
Refs. 18, 26, and 27, and Doppler-broadened treatments
have been considered in Refs. 28 and 29. In particular,
averages over the pump spatial holes have to be carried out.
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However, the suppression A’ dependences discussed above
survive this average.

The observations on population-difference resonances are
based directly on the absorption formula [Eq. (38)] and its
third-order approximation, which is quite general. We now
consider a number of special cases, starting with a homoge-
neously broadened medium.

3. HOMOGENEOUSLY BROADENED
OPERATION

For homogeneously broadened media, we can drop the v
dependence in Eq. (38), including that in the D's, in £, and
in A’”. Our discussion focuses on large detunings, but similar
features occur for detunings less than the natural linewidth.
We are interested in some simple analytic approximations to
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stimulated Rayleigh and Raman resonances given by Eqgs.
(46)-(48).

Consider next an open system with arbitrarily large pump
intensity for which vy, <« 44, v « A, and consider beat
frequencies A of the order of v,. For simplicity, we further
neglect T, which just modifies the saturation intensity in
these approximations. Then T of Eq. (40) reduces to 1/27,,
F of Eq. (41) reduces to v»/(vs + iA), and Eq. (38) reduces to

N ; vD, . 4xy/AA,

= —iqx - —_ - »

' “1 4+ dxy/0%y, vo(1 + dx2y/v,A,8,) + iA
(49)

where x = |/a6 2/2h is one half of the Rabi flopping frequen-
cy. Dropping the remaining differences between the A, we
find the real part of «, to be

the absorption coefficient [Eq. (38)] that reveal simple reso- v/8.2 1
nant features. We then illustrate these features numerical- Refa} ~ « — ]
ly. 1 + 2x%y/v,A, ‘
Consider first the real part of the second-order complex .
probe-absorption coefficient given by Eq. (42). For v, = v, 4Ax%/A, :\
= 0, pump detunings |A;| > v, and beat frequencies A of the X[1= v 2(1 + 4x2y/v, 0,02 + A2 ’ (50) i
order of v, we can approximate the D, of Eq. (23) by —i/A,. b b2 ‘
Hence the real part of Eq. (43) reduces to To second order in the pump field, we neglect 4x2y/ypA52 <
2x® A compared to 1 in the denominators. This decision gives the
Rela,™} =~ q, N mv (46) still simpler formula
i T . v 4ax%/A,
which has a dispersive line shape. Such dispersionlike ab- Rela)} ~ oy =1 1 = ——— |- (51)
sorption resonances are well known in two-level saturation ) vy A
spectroscopy. They are dispersionlike instead of Lorentz- ' . . .
ian because the dipole is being driven way off its resonance The first te}- mis Fhe lllnear probe absorptlo.n. The second
leading to a phase lag or lead of /2. This resonance vanish- term has a dlspejrslve line shapfa as a function of the beat
eading to a phase lag
es if ¢ vanishes, that is, if ' = 27. frequen_cy Aand is due to scattem}g (?f the pump wave off the
It no longer vanishes if we expand Eq. (38) to the next Qopulatlon pulsatlons. In these limits, amplification (nega-
R . . tive absorption) occurs when
order in the pump intensity and assume the resonance con-
dition T" = 2. For similar detuning values and A of the 4A(x%/A,)
order of vy, we find the fifth-order contribution (first order in T2p A (62)
probe, fourth order in pump) 7o
2ty yA In particular, for A ~ v, we have gain for 2x%/v;A; > 1.
Reja,) =~ Rele,™ > —q, A5 24 A2 . (47) Since our perturbation expansion is valid only for x2y/vA92
2
In addition in this order, there is a resonance in the vicini- pl-
ty of Az ~ 0 from the D3* term [and hence from p; of Eq. z
(26)] in the denominator of Eq. (38). This resonance occurs 2r
for A ~ A,. This corresponding contribution is % -
(5) x* v g [ ‘
o~ ~ gy X Y =L
Rela)} >~ Refe,™} ay Af R E A (48) §
a 4
and originates from three-photon processes that induce a L |
polarization p; at the conjugate-wave frequency v;. More 5 l
specifically, the pump-wave scattering off the population & o~ > + S
pulsations contributes to two side modes, one being the [ S VU W T SR
probe itself and the other being the conjugate wave. The TR ® 'loo %0 w0
contribution in Eq. (48) is sorfletmfes called a Raman reso- Fig.4. Probe absorption line shape as a function of probe detuning
nance and reveals probe amplification at the expense of the for the stationary atom limit and a nearly closed system (v, = v, =
pump field. Several authors246.11.17.18 have predicted am- 0.001, T = 1, ¥ = 0.501, x = 40, Ay = 100 pump detuning). All
plification of a weak probe field by a strongly saturated frequency parameters in this and subsequent figures are in units of
resonance medium in spite of an uninverted population. the total upper-level spontaneous decay rate y, + T', which is set
This amplification was observed by Wu et al® It results equal to unity. Linear absorption, Rayleigh (a), and Raman (b)
resonances are identifiable. The same dimensionless units are used —
from constructive scattering of the pump off population for relative probe absorption in all the following figures, and A, = »,
pulsations into the probe wave. Figure 4 illustrates the — w, Ay = vy — w, which differs from the text by a minus sign.
. e ma et sdesmmessmsesstnestsssii
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Fig. 5. Rayleigh resonance for stationary atoms in the perturba-
tion limit for an open system v, = 0.101, v, = 1.001, I' = 0,y = 0.551,
x = 2, and A; = 10. No such resonance (to order x2) oecurs for a
closed svstem (see text).
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Fig. 6. Same as Fig. 5 but for a weaker pump field of x = 0.5.
Perturbation theory is valid. There is a resonance structure but no
amplification.

<« 1, we find that 4/A, must be «1, which is consistent with
our original approximations. This result shows that already
in third-order perturbation theory, the scattering off popu-
lation pulsations is larger than the linear absorption at this
detuning. Gain in the absence of population inversion is
well known for larger pump intensities.2*6

Corresponding results of a numerical evaluation of Eq.
(38) are shown in Figs. 5 and 6 and are in good agreement
with our analytic approximations. Note that alternatively
we could have taken I' + v, << v5. The same formulas [Egs.
(49)-(51)] result, with v, replaced by I' + v,. In the first
case, the population difference lifetime T} is given by 1/v,,
and in the second case it is given by 1/(I" + v,). The reso-
nance in both cases is characterized by the corresponding T
limit. This discussion has centered on cases for large pump
detuning, but similar resonances also occur within the homo-
geneous linewidth.

4. MOVING ATOMS

We now calculate the probe-absorption coefficient [Eq. (38)]
for an atomic medium assuming a Maxwellian distribution
of atomic velocities given by

W) = —1 exp(—v2/u?), (53)

uymw
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where u is the average atomic speed. The absorption coeffi-
cient [Eq. (38)] can be written in the form

= —p —r
a, oy j dvW(v) Ko+ 4, —iy

x| 1~ Iy®
(Kv+ A, + iyMKv + A, — iy))

LF(A)y?
-« '—2—7- j doWi(v)

v +id, + iKv
¥+ (4, + Ku)?

2y +iA ¥ — (A3 — iKv

; . — (54)
B2+ (8, + Kv)* v +1i4, + iKv
where
8% = (v +iA)|y +iA + vL,F ()], (55)
v =y 1+, (56)

The approximation made for obtaining Eq. (54) is the ne-
glect of the term (K, — K,) - vcompared to y. This action is
justified for unidirectional waves, since (K, — K})v is typi-
cally of the order of 107%y. Inactual experiments, the pump
and probe typically propagate in slightly different direc-
tions, leading to a residual Doppler width of the order 0.1«.
We neglect corrections of this sort in the following. This
represents a major difference from the counterpropagating-
wave case for which the Doppler shifts add, rather than
subtract, and the (K, — K,) - v terms play a decisive role.
We make use of the plasma-dispersion function defined as

« -1/2,-x*
Ziy) = —J de T :x—~ (57)
—x H

with Im{u} > 0. When we use the method of partial frac-
tions, the velocity integral of Eq. (54) can be reduced to a
sum involving functions Z,, Z3, and Z,, which, as defined in
Appendix A, can each be written as a sum of plasma-disper-
sion functions defined by Eq. (57).
The general result as asum of Z, Z,, Z3, and Z, functions is
@9

. XY aolyy® . )
at =i Ko Z(py) + m [Zy(pigs —1) + Zoluyus; 1)]
Ly 2y — iA)F*

T (Kuy?

(Z2(I-‘l!‘4; =1) + Zy(p s 1)

A
+ ? [Zs(#lmﬂz; =1=1) + Zy(upgpq; 1 -1
u

1272
' 2v'Ku

{Zg(ﬂlﬂsﬂlq; -1-1)+ Z3(I‘-1#5Il4; 1-1)
+ Zg(ﬂlﬂslla; 11)+ Zg(lllﬁls#:;; —1+1)
A
t o aCdmenauy =1 =1 =1) + Zy(upuap 1 =1 —1)

+ Zylupuggny; =11 -1)
+ Zy(ypgpgng; 11 —1)]}), (58)

adabod
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where
ry = (iy + A))/Ku, sy = (v — A))/Ku,
r3 = (8 + Ay)/Ku, uy = (i — Ay)/Ku,
By = (v + A)/Ku,  ug= Iy — Ay)/Ku. (59)

The general form of our result allows us to consider a num-
ber of limiting cases. First, we can reproduce a result previ-
ously obtained in the Doppler limit.

5. DOPPLER LIMIT

The Doppler limit is achieved when all decay constants (v,
Yar I’y ¥), detunings (A, 1Al), and the Rabi frequency 2x are
much smaller than the Doppler width Ku. Using the Dopp-
ler-limit expressions given in Appendix A for Z», Z3, and Z;
and after long but straightforward calculations, we obtain

a, = «, exp]{—(A/Ku)?]

i T ey +inge
Yy +y+ia) 2 VR

[V =y =id) B+NBE-y-id]]
Yy +vy+1i4)

YHIA) BB+ +id)
60)

where the inhomogeneous broadening linear-absorption co-
efficient « is defined by

oy = \7royy/Ku. (61)

This result is the same as that of Baklanov and Chebotaev,!
except that I' is included in ¥, 8, and T, and hence in the
dimensionless intensity [;. Including the I' accounts for
spontaneous emission from level a to level b and allows us to
investigate open and closed systems (no population loss to
the external reservoir and no collisions present). The Dopp-
ler-limit results can also be obtained by direct integration of
Eq. (38) using the residue method in the complex plane.!. In
the Doppler limit, velocity-selected atoms provide the major
contributions to the line shape, and the slowly varying atom-
ic-velocity distribution functions can be evaluated at the
selected velocity.

In the weak-pump-field limit, the probe-absorption pro-
file consists of a broad Gaussian of width Ku containing a
Doppler-free hole with width I' + v, (or 2y or v,»). Keeping
only first-order terms in I, one can obtain for a closed
system

N Ly (2T + (A
@y = o expl—(A,/Ku) ]| 1 - R E (62)
(I' +:14)"
To explain this perturbation-theory result, we return to Eq.
(54) and note that atoms having velocities

Kv=A,
Kv=A, %4,
Ku = A, (63)

are resonant with the applied fields. The contribution to
the probe absorption comes from atoms with velocities that
simultaneously satisfy at least two of the equalities [Egs.

Vol. 5, No. 1/January 1988/J. Opt. Soc. Am. B 167

(63)]. Ineach case thisleadstoaresonanceat (A, = 4,ie., A
= 0). The A = 0 resonance comes from satisfying velocity-
selection rules [Eqgs. (63)], and this result is in agreement
with the analytical expression of Eq. (62) (see Fig. 7).

For Rabi frequencies satisfying Ku > x > v, the perturba-
tion limit is no longer valid, but the Doppler limit still holds.
The velocity-selection conditions, obtained from Eq. (54) in
this limit are

Kv =4, + JA? — 4x%,

Kv=A,
Kv = A,. (64)
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Fig.7. Probe-absorption line shape for moving atoms in the Dopp-
ler limit (Ku = 100, x = 0.2, A; = 5), a closed system (v, = 0.001, v, =
0.001, T = 1, 4 = 0.501), and the perturbation-theory limit [x < ¥|.
The dip near A, = A; results from velocity selected atoms. All
subsequent figures are for the closed systems.
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Fig. 8. Probe-absorption line shape in the Doppler limit but for a
moderately strong field (x = 20, Ku = 100, A, = 0). A dead zone can
be seen centered around A; = Ay = 0 of width 4x. In this detuning
range no atoms can satisfy the velocity-selection criteria to be reso-
nant with the Stark-shifted transition frequencies.
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Fig. 9. Same as Fig. 8 but for a pump detuning of A, = 20, which
shifts the center of the dead zone.
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If one first considers zero detuning, the condition of Kv =
+(A2 — 4x9) 1 can be satisfied only for A; > 2x or A < —2x
for which no resonant atoms will exist. This means that in
the region of detuning |A,| < 2x the absorption coefficient is
equal to zero. As can be seen in Fig. 8, there is a symmetric
dead zone in the Gaussian profile. For arbitrary pump
detuning A, the velocity-selection condition requires that A,
> 2x and A, < —2x for absorption to occur. Consequently,
the dead zone is shifted from the center by A., as can be seen
in Fig. 9. The size of the dead zone depends on the field
strength; by changing x and keeping A fixed, one can actual-
ly move the borders of dead zone, as illustrated in Fig. 9.

For the strong-pump field, the Doppler-limit results do
not contain any probe amplification (gain in the profile) and
show no narrow Doppler-free resonances related to the
ground- or excited-state width.

6. ABSORPTION LINE SHAPE AND
DETUNING DEPENDENCE

We are now in a position to consider cases that were not
obtainable in previous calculations, namely, those in which
the detuning A, is of order Ku and the pump field is quite
strong, 2x ~ Ku. The line shape consists of the contribu-
tions from atoms with all possible velocities, not only those
from atoms whose velocities Doppler shift their frequencies
into resonance with the fields. As can be seen in Fig. 10,
there is a Doppler-limit contribution to the line shape; how-
ever, internal structure can also be seen in a place where the
dead zone used to be. To be able to provide a physical
explanation of the line shape, we consider a perturbative
development of the profile for a relatively weak pump field.

Expanding the general solution in powers of x>, we obtain
a linear absorption term (x*)", which is Doppler broadened
since the resonance condition « — »| = —Kuv can be satisfied
for a range of detunings lo — #| € Ku. The nonlinear (x¥)!
term gives a Rayvleigh resonance about A ~ 0 that remains
Doppler free. since both waves are Doppler shifted nearly
equal amounts. The condition », — Kv = v, — Kv implies
that the beat frequency A = > — »; =~ 0. This is true only for
copropagating fields. If pump and probe fields are propa-
gating in opposite directions, then this resonance condition
gives |r) — | < 2Ku, that is, a broad resonance. For the next
nonlinear term, (x°}%, the Raman resonance becomes veloci-
tv hroadened. since the resonance condition can be satisfied
when (1. — Kv) = (r; — Kv) + (vs — Kv) = w, that is, when (20
- —w) < Ku.

It is now possible to see how the total line shape has been
formed. With zero detuning, the line shape for (x = 50, Ku
=25} isshownin Fig. 11. This intermediate case was impos-
<ible to obtain with the previous limits and shows the transi-
tion from homogeneous broadening to inhomogeneous
broadening. As can he seen in Fig. 11, a Doppler-limit
comtribution does occur and is similar to that of Fig. 8.
However, we can see additional structure in a place where
the dead zone used to be. Our line shape accounts for the
negative probe absorption, which occurs inthe (=2x < 4y <
2x) region. This is definitely a non-Doppler-limit contribu-
tion. It can be traced to a contribution from all atoms that
<atisfy the velocity-independent stimulated Rayleigh-reso-
nance condition whenever A ~ 0.

The amplification occurs in the dead zone (=2x < A <
21), as in the Fomogeneously hroadened case in Fig. 4. Thus

Khitrova et al.

the dead zone provides openings in the inhomogeneously
broadened profile that allow us Lo see the Doppler-free con-
tributions. The disadvantage of the zero-detuning case is
that it is impossible to distinguish contributions from differ-
ent resonances (they all are at the same place, A, = A = 0)
and to obtain any information about ground- and excited-
state widths.

Consider now the large-detuning case (Ku ~ 24,). The
Doppler-limit contribution occurs only for (A > 2x) and (A <
—2x) (the position of the dead zone is shifted from the center
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Fig. 10. Probe-absorption line shape when the Doppler limit is no
longer valid, with x = 10, Ku = 20, A, = 10. Structure is now seen in
the dead zone (Rayleigh and Raman resonances), although the
Doppler-limit contribution is still evident.
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Fig. 11. Probe-absorption line shape for the zero-pump-detuning
case with Ku = 25, x = 50. Owing to contributions from atoms with
all velocities, negative absorption occurs in the area that is a dead
zone in the Doppler limit.
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Fig. 12, Line shape for Ku = 10, x = 10, A, = 5. Contributions
from atoms with all velocities can be seen, including a Rayleigh
resonance at Ay = 3, and Raman dip in the area where the dead zone
used to be.
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Fig. 13. Line shape for Ku = 100, x = 40, A, = 100. The substruc-
ture occurring in the area of the dead zone is shown in detail. One

can see that the Doppler-limit contribution dominates the Raman
dip.
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Fig. 14.  Same as Fig. 13 except for the increased field strength, x =
30. The Raman dip dominates the Doppler-limit contribution.
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We have seen that, by changing the field strength, we can
move the border of the dead zone. At the same time the
shape of the Raman dip itself is only slightly affected, since
itis Doppler broadened. For the case x = 40, A, = Ku = 100
(Fig. 13), the Doppler contribution dominates over the Ra-
man dip, and there is only a small gain before a large Dopp-
ler-limit contribution, which appears exactly at (A, = 2x +
A; = 180) (Fig. 13). Comparing with the stationary atom
line shape (Fig. 4), we can see that the stimulated Rayleigh
resonance remains the same but that the Raman resonance
is changed substantially. If we now increase the field
strength (all other parameters remaining the same), the line
shape changes dramatically, the border of the dead zone
moves (x = 50, A; = 200), and the Raman gain dominates the
profile (see Fig. 14). There is a narrow dip just before the
dead-zone border, then a small peak occurring exactly at the
border, and, finally, additional gain that occurs in the detun-
ing range of the Doppler-limit contribution. Consequently,
by properly choosing the field strength, we can divide the
Raman gain into two parts. Thus we can vary the pump
intensity to produce Doppler-free structures in the openings
of a Doppler-limit profile. The line profiles displayed in
Figs. 7-14 indicate that both velocity-selected and non-ve-
locity-selected atoms can make important contributions to
the probe absorption for different values of the detunings,
decay rates, and pump-field strength.

APPENDIX A

This appendix defines the higher-order functions Z,, used in
Eq. (58) and evaluates them in terms of the plasma-disper-
sion function Z(x) of Eq. (57). They are

€ &
Zy\ mimass

10

€2 €4 €4

Z, <ﬂ1l‘zl‘:<l‘4?

€ € €

)-

)

by Au). For (A; < —2x 4+ A,), there is a Doppler-limit
contribution that just adds to the velocity-broadened linear
absorption peak. An interesting feature is the Rayleigh
resonance (v| = vy), which is Doppler free and can be seen in
the dead-zone region. In the strong-field limit, the Rayleigh
resonance exists for both open and closed systems (Fig. 12).

Another interesting structure that occurs in the dead-zone
region is a broad dip that terminates at exactly the dead-
zone horder (see Fig. 12). The origin of this dip can be
traced to the velocity-broadened Raman resonance dip,
which is competing with the Doppler-limit contribution
(Fig. 12). As for purely homogeneous broadening, it is a
three-photon process that is responsible for the probe ampli-
fication, but it is possible to observe this gain in the profile
only because it occurs in the dead-zone region. One actually
can change the shape of the gain by considering that the
location of the Doppler-limit contribution depends on the
field strength (A; > A, + 2x).

) W()de
= . A - N Al
J;. () + e 0/udu, + e;0/u) (Al
x W(v)yde
o — (A2
f-x (uy + eu/uduy + e0/ud(u, + ev/u) )
- f‘r P Wi(v)dl’i [, . (As)
—o by F U/ g + /W) (uy + ee/u) (g + ¢ v/u)
In terms of Eq. (58), they are given by
Zp,) — Z(py)
Zyppgo=--— 00, (Ad)
Hy = €y
Zylpyy €) ~ €Zy(uop e/€)
Zoluypopg e’} = S0 Hekta , (A5)

Hy = 6y

Vo Zoluypgp g €€7) — €Z(uaptu g €/ /6D
Zy (s popyp g e€’e’") = e
Mo = €y

(A6)

ACKNOWLEDGMENTS

This research was supported in part by the U.S. Office of
Naval Research, in part by the U.S. Army Research Office.
in part by the U.8. Air Force Office of Scientific Research,




ey

\

170 J. Opt. Soc. Am. B/Vol. 5, No. 1/January 1988

and in part by the National Science Foundation under grant
PHY-8415781. It is based in part on the Ph.D. dissertation
of G. Khitrova (New York University, New York, 1986).

REFERENCES AND NOTES

1. E. V. Baklanov and V. P. Chevotaev, Sov. Phys. JETP 34, 490
(1972).
2. 8. Haroche and F. Hartman, Phys. Rev. A 6, 1280 (1972).
3. E. V. Baklanov and V. P. Chebotaev, Sov. Phys. JETP 33, 300
(1971).
4. B. R. Mollow, Phys. Rev. A 5, 2217 (1972).
5. M. Sargent Il and P. E. Toschek, Appl. Phys. 11, 107 (1976).
6. M. Sargent III, Phys. Rep. 43, 223 (1978).
7. G.S. Agarwal, Phys. Rev. A 19, 923 (1979).
8. G. Nienhuis, J. Phys. B 14, 1693 (1981).
9. F. Y. Wuy, S. Ezekiel, M. Ducloy, and B. R. Mollow, Phys. Rev.
Lett. 38, 1077 (1977).
10. R. W. Boyd and S. Mukamel, Phys. Rev. A 29, 1973 (1984).
11. C.Cohen-Tannoudji and S. Feynaud, J. Phys. B 10, 345 (1977).
12. M. Sargent IIL, D. A. Holm, and M. S. Zubairy, Phys. Rev. A 31,
3112 (1985).
13. D. A. Holm, M. Sargent 111, and L. Hoffer, Phys. Rev. A 32, 963
(1985).

17.

18.

19.

[N AV )
™o

23.
24.
25.

26.
27.

Khitrova et al.

. N.Bloembergen and L. J. Rothberg, in Spectral Line Shapes, F.

Rostas, ed. (de Gruyter, Berlin, 1985), Vol. 3, p. 265.

. N. Bloembergen, A. R. Bogdan, and M. C. Downer, in Laser

Spectroscopy V,A.R. W. McKellar, T. Oka, and B. P. StoichefT,
eds. (Springer-Verlag, Heidelberg, 1981).

. P. R. Berman, G. Khitrova, and J. F. Lam in Spectral Line

Shapes, F. Rostas, ed. (de Gruyter, Berlin, 1985), Vol. 3, p. 337.
J. L. Carlsten, A. Széke, and M. G. Raymer, Phys. Rev. A 15,
1029 (1977).

R. W. Boyd, M. G. Raymer, P. Narum, and D. Harter, Phys.
Rev. A 24, 411 (1981).

Y. Prior, A. R. Bogdan, M. Dagenais, and N. Bloembergen,
Phys. Rev. Lett. 46, 111 (1981).

. G. 8. Agarwal and N. Nayak, J. Opt. Soc. Am. B 1, 164 (1984).
1. L.J. Rothberg and N. Bloembergen, Phys. Rev. A 30, 820 (1984).
. G. Grynberg, E. Le Bihan, and M. Pinard, J. Phys. 47, 1321

(1986).

G. Grynberg and M. Pinard, Europhys. Lett. 1, 129 (1986).

G. Grynberg, Ann. Phys. 11, 125 (19886).

For a more pedagogical derivation of a simpler two-level model,
see R. W. Boyd and M. Sargent III, J. Opt. Soc. B 4, 99 (1987).
T. Fu and M. Sargent I1I, Opt. Lett. 4, 366 (1979).

See R. L. Abrams et al, in Optical Phase Conjugation, R. A.
Fisher, ed. (1983), and references therein.

. S. M. Wandzura, Opt. Lett. 4, 208 (1979).
29. M. Ducloy and D. Bloch, J. Phvs. 42, 711 (1981).




P

PHYSICAL REVIEW A

VOLUME 36, NUMBER 8

OCTOBER 15, 1987

Transient probe spectra in a driven two-level atom

Ning Lu and P. R. Berman
Department of Physics, New York University, 4 Washington Place, New York, New York 10003
(Received 15 May 1987)

We analyze the transient probe spectra that arise when two-level atoms in an atomic beam are
excited by a “pump” laser field and are probed by a step-function weak field on the same atomic
transition. The temporal relaxation of the probe spectra to their steady-state values is found to de-
pend critically on the initial atom-pump-field dressed-state populations and coherences. The tran-
sient spectra may be composed of absorption-emission structure that is totally absent in the
steady-state limit. A simple physical interpretation of the spectra is given in terms of a conven-
tional dressed-atom picture. In addition, we study the effects of collisions on transient probe spec-
tra and investigate the transient buildup of several collision-induced features in the spectra.

I. INTRODUCTION

Pump-probe spectroscopy is a useful method for
studying the interaction of laser fields with atoms. The
problem of a weak “probe” field and an arbitrarily
strong “pump” field driving the same transition of
“two-level” atoms in an atomic beam'~® or in a va-
por®>%19 has been studied since the early 1970’s. Much
knowledge has been obtained for the probe absorption in
the steady-state limit. Two well-known results obtained
in «n atomic beam for a strong pump field are (1) the
steady-state probe absorption spectrum consists of one
absorption component and one emission component for
an off-resonant pump field and (2) for a resonant pump
field, the probe spectrum exhibits a complicated
absorption-emission structure of relatively small ampli-
tude. Some features of the probe spectrum can be con-
veniently explained in terms of a conventional “‘dressed-
atom™ description of the atom-field interaction.* In the
conventional dressed-atom approach, eigenstates of the
atom plus pump field serve as the basis states for the sys-
tem. The absorption and emission components of the
probe spectrum are viewed as arising from transitions
between these dressed states.

Other interesting features of the steady-state probe
spectrum relate to the effects of collisions on the spec-
trum.>*%% (1) For a large pump detuning, a small-
amplitude dispersion structure occurs centered at
0,=10, (), and Q, are the pump and probe frequencies,
respectively) when the atoms undergo collisions.”!" (2)
In the case of a nearly resonant “weak”™ pump field in-
teracting with atoms whose colicrence decay rate is
much larger than their population decay rates, a narrow
hole®®? is created in the probe-absorption line shape
centered at (3, =0,.

Recently, we developed a theory of transient probe
spectra for another pump-probe problem —one in three-
level atoms.'> We assumed that three-level atoms in an
atomic beam were prepared with arbitrary initial condi-
tions and then exposed at t =0 to a strong pump field
and a weak probe field each tuned close to resonance
with one of two coupled transitions. As cxpected, we
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found that all transient probe spectra ultimately evolved
to the well-known steady-state Autler-Townes doublet
structure.’> However, we found that transient prebe
spectra in three-level atoms may differ dramatically for
different initial atomic conditions. In particular, the
transient probe spectra arising from atoms initially
prepared in a pure dressed state and in a superposition
of dressed states are quite different. Experimental
verification of our predictions has been achieved recent-
ly.'* We also calculated the transient spectrum of reso-
nance fluorescence arising from strongly driven two-level
atoms when the atoms are initially prepared in pure
dressed states of the atom-field Hamiltonian.'” Again, it
is quite different from transient fluorescence spectra
when atoms are initially in their ground states (superpo-
sition of dressed states).'® It is our purpose in this paper
to study the transient probe spectra of driven two-level
atoms in a homogeneously broadened medium We find
that the transient probe spectra considered here also
differ dramatically for atoms initially prepared in a pure
dressed state and in a superposition of dressed states.
Moreover, novel spectral components can be observed in
the transient regime.

A qualitative discussion of transient probe spectra
with a strong pump field is presented in Sec. II. We de-
velop the general formalism and give expressions for the
probe spectra in Sec. III. In Sec. IV we study the effects
of initial conditions on transient probe spectra in the
strong-pump-field case. The transient buildup of a
collision-induced narrow hole in the weak-pump-field
case is studied in Sec. V, while the transient buildup of
collision-induced dispersion structure in the large pump
detuning case is viewed in Sec. VI.

II. QUALITATIVE DESCRIPTION
OF TRANSIENT PROBE SPECTRA IN
A STRONGLY DRIVEN TWO-LEVEL ATOM

In studying the strong interaction of atoms with laser
fields, a dressed-atom picture (DAP) provides a good ap-
proach to the problem and allows one to gain physical
insight.*!2 Our calculation for the transient pump-probe
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problem in a two-level atom is carried out with the use
of a classical description of the laser fields. The corre-
sponding physical interpretation, however, is convenient-
ly explained in a conventional DAP.* In the convention-
al DAP, a fully quantum-mechanical description of the
atom-field interaction is used. For a two-level atom in-
teracting with a strong, nearly resonant monochromatic
laser field (pump field), the energy-level structure in the
conventional DAP appears as an infinite set of equally
spaced doublets. The dressed states | 4,) and | B, ) in
a given doublet are linear combinations of the states
[1,n) and |2,n—1), where n indicates the photon
number for the field and 1 and 2 refer to atomic states.
The energy difference between the center of two neigh-
boring dressed-state doublets is #(,, where ; is the
laser frequency. Corresponding to the classical laser
fields used in the actual calculation, the mean photon
number 7 is much larger than the width An of photon-
number distribution, which, in turn, is much larger than
1,

A>>An>>1. 2.1)

Consequently, for photon number » within the width An
of its distribution centered at 7, the energy splitting be-
tween the two states |B,) and | 4,) within each dou-
blet is almost independent of n and can be identified as
fiwg 4 =HXI+ A2, where Aj=w;—Q, is the atom-
field detuning (w,, is the atomic transition frequency),
X,=p,;+ 6, /% (chosen to be real and positive) is the Rabi
frequency associated with a classical laser field of the
form &, exp[ —i(Qt —k,-r+¢;)]/2+c.c. and has been
chosen to be real and positive, and p,; is an atomic di-
pole matrix element. It is assumed that the frequency
splitting wg, of two states [B,) and | 4,) is much
larger than both the population relaxation rate of state
2, 71, and the coherence relaxation rate of the atom, y,,.
One need only consider the transition between two adja-
cent doublets to deduce the probe-absorption spectrum.
Because of mixing of atomic states in each of the dressed
states, all transitions connecting the two doublets are al-
lowed.

In the DAP, the probe absorption spectrum arises
from transitions of the probe field between dressed
states. In steady state, probe absorption is proportional
to both the transition rate between two dressed states in
two neighboring doublets and the population difference
between the lower and upper states. The relative popu-
lations of the two states within a doublet depends on the
pump-field strength and atom-pump-field detuning A,.
On the other hand, the populations of states | 4,) and
|B,) vary negligibly with n (e, py 4  ~pa, a,

=Pa,, 4, Ps, B, ~Ps,3, ::p‘Bnﬁranﬁ»l). When the
nump field is tuned below the atomic transition frequen-
cy (A,>0), there is more population in the lower
dressed state of a doublet than in the upper one in
steady state. Furthermore, the transition rate between
states | 4,) and |B, ) is larger than that between
states |B,) and | 4,,,) when A,>0. Consequently,
the steady-state probe spectrum for A, >0 consists of
one absorption component at ,=0,+wp, and one

A‘=wn-0.>0 A.=0
fiwg, X,

I S S TN - __l_n_.-_m,.,)

-T- 2 2 |A..,‘) I f 'Ano‘l)
fin, Bga Bas w0,
J. - 1393 J_ —e_ e B
-2 o 1@ |55 —a 8 p»
=Wg,
_—

—
I W, 0,-0,

(a) (b)

Og_nl

FIG. 1. Steady-state probe transitions in the conventional
DAP and the corresponding absorption spectrum of a two-
level atom for strong excitation (a) by an off-resonant pump
field A; >0 and (b) by an exactly resonant pump field. In (b) all
dressed states have the same populations in steady state. A
thicker transition line indicates a larger transition rate (B,,),
which are related to transition matrix elements.

emission component at ,=,—wp,, with the absorp-
tion component having a larger intensity than the emis-
sion one, as illustrated in Fig. 1(a). In the limit
| Ay | >>X, the absorption component corresponds sim-
ply to the linear absorption of the probe. When the
pump field is tuned exactly on resonance with the atomic
transition (A;=0), the lower and upper dressed states
have the same population in steady state (all transition
rates between dressed states are also the same). Conse-
quently, in the so-called secular approximation* of the
dressed-atom theory in which the probe spectrum is
viewed solely as arising from transitions between pairs of
dressed states, the probe spectrum vanishes owing to the
equal populations of the dressed states [Fig. 1(b)]. This
result is true only to order y, /wp,4—a calculation to
first order in y, /wg,4 leads to a complicated emission-
absorption spectrum.

The transient spectra must evolve to these steady-state
distributions. As has been noted previously,'*'*!° the
transient probe spectra in a strongly driven two-level
atom may be strongly influenced by the initial conditions
of dressed states. We consider two kinds of initial condi-
tions: (a) atoms initially prepared in pure dressed states
and (b) atoms initially in their ground state. Under ap-
propriate methocs, pure-dressed-state initial condition
can be achieved.'>'"~!"" Since the steady-state probe-
absorption spectra display different structure for off-
resonant and resonant pump fields, we discuss the tran-
sient probe spectra for the two cases independently.

A, Off-resonant pump field A;£0

For an off-resonant pump field, atoms prepared initial-
ly in the lower dressed state | 4,) and in the upper
dressed state {B,) need to be considered. For A;>0
and atoms prepared initially in the lower dressed state
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| 4,) [ie., 2.p4,4,00=1, pp g (0)=p, p(0)=0],
transient probe spectrum at early times consists of an ab-
sorption component at {},=0,+wp, and an emission
component at Q,=Q,—wg, [see Fig. 2(a})]. As in the
steady-state limit, the emission component is smaller
than the absorption component in the transient regime.
This result can be attributed to the fact that dressed-
state preparation in state | 4,) for A, >0 corresponds
to more population in bare (atomic) state 1 than bare
state 2. For A;>0 and atoms prepared initially in the
upper dressed state |B,) [ie, 2,ps8,5,(0)=1,
Pa,a,(0)=p,4 p (0)=0], the transient probe spectrum

at early times consists of an emission component at
0,=Q,+wp, and an absorption component at
0,=0,—wp, [see Fig. 2(b)]. In contrast to the steady-
state limit, however, the emission component is larger
than the absorption component. The fact that emission
is larger than absorption at early times can be attributed
to the fact that dressed-state preparation in state |B,)
for A, > 0 corresponds to more population in bare state 2
than in bare state 1. As time goes on, the dressed-state
populations change as a result of atomic relaxation and
optical pumping, eventually going over into the steady-
state limit. Consequently, the initial emission com-
ponent at ,=,+wp, becomes an absorption com-
ponent, while the initial absorption component at
0,=0,—wpg, becomes an emission component. (The
central component at (,=(1, is always absent because
of the nearly equal populations of dressed states | 4, )
and | 4,,,7,and |B,) and | B, ).

In Fig. 3 we show calculated transient probe spectra
at the three dressed-state transition frequencies for pa-
rameters XY;=20y,, A;=0.3X,, 7, =7,/2 and initial
conditions (@) ¥, p4 4 (0)=1 and (b) 3 pp g (0)=1.

(Calculations are presented in Secs. III and IV.) The
components build up to their steady-state values without
significant oscillation. The absence of large-scale oscilla-

IBa.p? _L_l__'__‘_l_ IB,.,>
’_.'_ lAnﬂ) 'An"l)
»BBA Bas -BBA ‘BAB
, 18,> -2~ 18,
__I___’_,__._JLI.. 1A, 1A,
—Wg, - J War
| w,, 0.0, -uw,, a,-0,
(a) (b)

FIG. 2. Probe transitions and the corresponding absorption
spectrum of a two-level atom at times immediately following a
sudden excitation by a strong, off-resonant laser field A, >0 for
atoms initially prepared (a) in the lower dressed state | 4, )
and (b) in the upper dressed state |B,). Thicker transition
lines indicate larger transition rates.
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tion can be attributed to the absence of coherence in the
initial condition, p 4 g (0)=0, as will become clear later.

It is also related to the fact that pure-dressed-state
preparation corresponds to the situation that the Bloch
vector B=(u,v,w) is initially parallel (or antiparallel) to
the driving field vector Q5=(—X,,0,4,), where u, v,
and w are related to atomic density matrix elements g
in the pump-field—interaction representation®® by

u=pp+p2
v=i{p~—pp), 2.2
w=pn——>pnu,
Pilt+pn=
0.4 T T T
(a) 4
0.3
0.2
T
< 0.1
>
= O

X1/72=20

-0.1
0,=0,—waa 4,/x,=03 |
-0.2 Ye1/72=0.5
L L \
0 2 4 6 8
72t
0.4 T T T
X1/72=20 (b) 1
0-3r A,/x:1=0.3 ;=0 +waa

| Y21/72=0.5

Q=1 —wp,

Pee(0)=1 j
2 ! !
0 2 4 6 8

72t
FIG. 3. Transient probc absorption at the three dressed-
state transition frequencies Q,=0,twp, and Q,=0, as a
function of y,t for an off-resonant pump field with X,/y,=20,
A,/7X,=0.3, ¥;=v,/2 and atoms initially prepared (a) in the
lower dressed state | 4, ), i.e., §,,(0)= 2.P4, 4,10)=1, and

(b) in the upper dressed state |B,), ie., Fgs(0)
=3, pa, ,;"(0)-—- 1, where g, and Py, v,. are the semiclassical

and conventional dressed-state density matrix elements, respec-
tively. The short lines on the right-hand side indicate the
steady-state values, which are independent of initial conditions.
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Since the Bloch vector satisfies the equation
dB/dt =Qz XB=0, the Bloch vector B is “locked” to
the driving vector {p and does not precess as it ap-
proaches its steady-state value. The small oscillations
appearing in Fig. 3 arise from nonsecular contributions
of order y,/X, (see Sec. IVB). As the ratio X,/y; in-
creases, the amplitude of the oscillations decreases.

For an atom initially in the ground state 1, 5,,(0)=1,
the initial condition corresponds to the superposition of
dressed states p, 4 (0)#0, anB"(O);éO, P,z 0170

The coherence p 4 p,0)0 leads to oscillations in the

buildup of the absorption and emission component as
well as a transient oscillatory probe absorption centered
at ,=1%,. The central component at Q,=(), appears
for such an initial condition even though the populations
of states |u,) and |u, ,,) (u=4,B) are always almost
identical in the transient regime. The transient probe
spectrum at early times is illustrated in Fig. 4. The cen-
tral component is unusual in that it never appears in the
steady-state spectrum. In Fig. 5 we display calculated
transient buildup of probe spectral peaks with the same
parameters as in Fig. 3 for the initial condition
p1(0)=1. In this case, spectral components approach
their steady-state values in an oscillatory fashion. This
oscillation can be viewed as quantum beats from the
dressed states. In terms of the Bloch vector picture, it is
related to the precession of the Bloch vector B around
the driving field vector 5 =(—X,0,A;). One interest-
ing feature is the alternative absorption and
amplification of the probe field in the central component
1,=0Q,.

FIG. 4. Probe transitions and the corresponding absorption
spectrum of a two-level atom at times immediately following a
sudden excitation by a strong, off-resonant laser field 4, > 0 for
atoms initially prepared in a superposition of dressed states.
Thicker transition lines indicate larger transition rates (B,,).
Dashed lines indicate oscillating spectral components.

0.4 T T T
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0.3
0.
fon ? =0, +wps __11
«EO.l 311(0)=1 .
o
X i
= 0 Q=0 ~wp, T
-0.1 WWWwaas
8,/x,=0.3 ;
-0.2 X1/72=20  72,/7.=0.5
] 1 1
0 2 4 6 8
72t
0.4 T T T
F (b) p
0.3 —
L 0e=0, §
0.2 —
To I
£ 0.1H
x L
= 0
-0.1r X1/72=20 _
- 8,/x,=0.3
-0.2+ Y21/ 72=0.5 7
] I
0 2 4 6 8

72t
FIG. 5. Transient buildup of the three probe absorption
peaks as a function of y,f for an off-resonant pump field with
X,/y,=20, A,/X,=0.3, y,1=7,/2 and atoms initially in the
ground state 1, i.e., §,,(0)=1. Two side components at
0,=Q,*wy, are displayed in (a) while the central component
at (1,=1, is shown in (b). The short lines on the right-hand

side indicate the steady-state values.

B. Resonant pump field A, =0

For a resonant pump field, all transition rates connect-
ing two neighboring pairs of dressed states are equal.
Consequently, absorption and emission components have
the same intensity for atoms prepared initially in a pure
dressed state [see Fig. 6(a)]. The absorption and emis-
sion components in the resonant pump field case appear
in the transient regime only. As the dressed-state popu-
lations evolve to their steady-state values, the absorption
and emission components vanish, as shown in Fig. 1(b).

If the atom is initially in the ground state 1, §,,(0)=1
lie, pa, 4,0)=pp p (0)=—p, 5 (0) and 3 p, 4 (0)
=1], the transient spectrum consists entirely of oscilla-
tory components centered at zero absorption since
dressed states | 4,) and |B,) now are equally popu-
lated [see Fig. 6(b)]. As the dressed-state coherence de-
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FIG. 6. Probe transitions and the corresponding absorption 72t
spectrum of a two-level atom at times immediately following a — T T
sudden excitation by a strong, resonant laser field for atoms in- P (b)
itially prepared (a) in the lower dressed state | 4, ) and (b) in a 0.2 { i I || I l' | B
superposition of dressed states. All transition rates between Lo ) ) Q=0yx,
dressed states are the same (‘B”‘,:}). Dashed lines indicate | ’ll| b =0 ]
oscillating spectral components. —_ 0.1
T?g - ]
cays away, all three components vanish. g;<& 0 \Af\
We show calculated transient behavior of the probe = i
spectral peaks for parameters X;=20y,, y, =¥,/2 for = |
initial conditions () 3, p4 4 (0)=1and (b) 5;(0)=1in =0.im 5 (0)=1
. ) n " . ‘
Fig. 7. The qualitative features of the probe spectra dis- - ? ‘[ I \ /2=20
! . ) Fy iy X1/ 7=
cussed above are clearly illustrated in this figure. Small ~o.2 il e | 0.5 -
oscillations seen in Fig. 7(a) will vanish as the ratio ) i )L 1 721/'7” :
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/7, increase 0 > 2 5 3

III. GENERAL FORMALISM AND SOLUTION

We consider a composite classical laser field of the
form

E(r,t)=4{ & exp[ —i(Q1 -k, r+ 6]

+ & exp[ —i(Qt —ky r+0,)]} +c.c. 3.0

interacting with two-level atoms in a homogeneously
broadened medium (for example, in an atomic beam
such that k;-v=k,v=0, where v is atomic velocity).
The frequency separation between levels 2 and 1 is w;),
and level 2 decays back to the ground state I at spon-
taneous rate ¥,. In a pump-field—interaction representa-
tion® and bare-atom picture, the density matrix equa-
tion of the system can be written as

9P _Lysp,

dr 3.2)

where a density-matrix element column vector j is
defined as

J
0 Y3 — X, 11X,
- 0 -y, Lix — iy,
L= —4x,  Lix, —yy+i4, 0 ’
Liv,  —lix, 0 —yy—iA,

72t

FIG. 7. Transient probe absorption at the three dressed-
state transition frequencies Q,=Q,%X, and Q,=0Q, as a func-
tion of y,t for a resonant pump field with ¥,/y,=20,
¥21=v,/2 and atoms initially prepared (a) in the lower dressed
state | A,), 1., §,410)= znp,,"‘,nt()):l, and (b) in the
ground state 1, 5,,(0)=1. In (b), the probe absorption is the
same {solid line) at the two side components (1,=€Q, Y, owing
to the resonant pump field and the symmetry in the dressed-
state initial condition. Their steady-state value (short line) is
indistinguishable from that of the component at (1, =1, both
of which are very close to zero.

o

P

pP= P 3.3)
P21

and matrices L and S(t) are defined by

(3.4a)
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0 0 —LiXe ¥ Lixze™
0 0 Lilye =% —Lige™
S(= _1iTtei® %if’fe"a’ 0 , (3.4b)
%iize —idt _%if/ze—iﬁt 0
f
. (1)
with %:Lﬁ‘”—i—Sﬁ‘o’ _ (3.9b)
X]zpz]'gl/ﬁ , (353)
We limit the solution to terms of order |X,|. Since L is
Yo=py6,/%, (3.55) a2 constant matrix and the initial condition is
. ) ﬁ(j’(0)=5joﬁ(0), the formal solution of Egs. (3.9) are
X,=X,expli(kyr—¢,)—ilk; r—¢))], (3.5¢)
70 =el'50)=Ve MV 1510, (3.10a)
Ar=on =, (3-6a) h f’ L—1') W)
gl = | eM' TS )p ()t
and P 0 . g
— At —1yy —1 Y At IV—1- ,
5=0,—Q, (3.6b) v [N s aveNdry - ip0)
where p,; (={2|p| 1)) is the dipole moment between (3.10b)
levgls 2 and 1, and X, has been chosen to be real and  yphere A is a diagonal matrix with diagonal matrix ele-
positive. Note that, for constant pump field &, and s being eigenvalues A, of matrix L,
probe field &, considered in this paper, L is a constant /
matrix while S is time dependent. A=8,4;, (3.11a)
It is assumed that the probe field is sufficiently weak , . . ]
so that its Rabi frequency satisfies the inequalit and V is a matzia whose columns correspond to the
4 y 4 y eigenvector y"/' of L associated with eigenvalue 4,
X2 <Y X . (3.7) V:(yﬂ»’yl.z),yt}»’y(-u) . (3.11b)
By using Eq. (3.2) and expanding g as The density matrix element %' can be written in the
o 3.8) form
p=p " +p + . - P
P =X, H (e ¥4 X3Q(1)e" (3.12)
where '™ is of order |X, ™, one finds that 5'°' and ) )
5" satisfy equations where H(t) and Q{1) are two time-dependent functions
and neither H(¢) nor Q(¢) depends on k, or k,. The
dé'o' — L™ (3.9a) transient probe absorption can be identified by examin-
dt P ' ing the density matrix element p,,
|
pu(t):ﬁ‘z({"(t)exp[ *i(ﬂlt —k,-r+d>)]+X2H(t)exp[ —i(ta —kz'r+¢2)]
+X3Q(nrexpf —i[(2Q, — Q) — 2k, —k;) r+26,~6,]} . (3.13)
f
One sees that H (1) gives the probe response which prop- 0 ! 2
agates in the k; direction while Q(¢) gives a four-wave- Hit)=3 1:2_1 mg'_lcl’"zl"'m ’ (3.16)
mixing response which propagates in the 2k, —k, direc-
tion. Consequently, the probe absorption is identified  where the Z,,(¢) give various transient resonant struc-
with H (t) and is proportional to a quantity W (t) defined  tures and C,, give the corresponding weights. Explicit
by expressions for Z,, (1) and C,, are presented in Appen-
dix A
= o .
WD =2Im[X;X:H(D) . (3.14) The transient probe spectra have the property
The general expression for H (t) is quite complicated.
We are interested in the solution of the problem when W(1;6,4,u(0),0(0),w(0))
wps =00+ AD 2 55y v (3.15) =Wl(t; -6, —A,,—u(0),0(0),w(0)), (317 —_

i.e., in the case of a strong pump field or large pump de-
tuning or both. To first order in y,/wg,4 OF V31 /g4,
we get from Eqs. (3.10) and (3.12)

where u, v, and w are defined in Egs. (2.2). Consequent-
ly, one can restrict the study of probe-absorption spectra
to positive A;.
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In steady state, it follows from Eqgs. (3.14), (3.16), and
(A1)-(A6) that

W(w)=|X;|*Im G0
rz—i(8+O)BA)
. N Cuo
[ —i6  T—id—wgq) |’
(3.18)
where
C_io — sin*(19)
Co |=iacosf 0
Cio cos*(16)
— sin*(}6)
+1al(ey —€yco0s’0)sin’0 | —cosd |,
cos(16)
(3.19)
Ty=yn+yocos’d, (3.20a)
Fy=4(y2+72—Yocos’d) (3.20b)
Yo=VY2—Y2» (3.20¢)
cosb@=A4,/wg,, sin@=X,/wg,, 0<O<Tm, (3.21)
a=[cos’6+(y,,/y,)sin’0] " '=y,/T, , (3.22)
€=V3/0py, €=V /0p4, €=Vo/Wp4 - (3.23)

The quantity I, is the relaxation rate of dressed-state
density matrix elements p, 5, and I, is that of
non

P4 4 —Pp g - As expected, in steady state W( o) is in-

dependent of initial atomic conditions. It obeys the sym-
metry relation

Wi(;8,0)=W(w;—06,—4)) . (3.24)

Clearly, the steady-state probe spectrum is symmetric
about §=0 only if A;=0.

In the case of resonant pump field (A;=0), analytic
expressions for W to all orders in ¥,/X, and y,,/X, can
be obtained and are presented in Appendix B.

IV, EFFECTS OF INITIAL ATOMIC
CONDITIONS ON TRANSIENT PROBE SPECTRA
WITH A STRONG PUMP FIELD

In Sec. III results are given in terms of bare-state den-
sity matrix elements. To discuss the transient spectra
with a strong pump field, it is convenient to introduce
dressed-state density matrix elements. There are two
kinds of dressed states. One is the conventional dressed
states*?! in which laser fields are quantized, the other is
semiclassical dressed states'®?? in which the laser fields
are treated classically. A physical interpretation of
probe-absorption spectra is conveniently given in the
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conventional DAP, as discussed in Sec. II. The conven-
tional dressed-state density matrix elements are related
to the bare-state ones through the semiclassical dressed-
state density matrix elements. The semiclassical
dressed-state density matrix elements are related to the
bare-state ones by23

Paa=3(14usind—w cosh) ,

Ppg =+(1—u sinf+w cosh) , 4.

Pap=P p4=+lucosf+iv+wsind) ,

where 0 is defined in Eq. (3.21).

The classical pump field given in Eq. (3.1) can be
represented in the conventional DAP by a coherent
state?* [a) in the field mode specified by the wave vec-
tor k; of the pump field. Correspondingly, the relation
between the semiclassical dressed-state density matrix
elements p,, and the conventional ones p, , = may be ap-

proximated as

Puv=2Pu,v, » 4.2)
n
and®
2n
-5 1% ~lal?
Pu,v, “p#vi?i!—e @ ’ (4.3)

with |a | >>1 to satisfy Eq. (2.1).

In terms of the initial values for semiclassical dressed-
state density matrix elcments, the symmetry relation
(3.17) can be rewritten as

W(1;8,0,54.4(0),545(0))

=W(t;—8,—A1,ﬁ35(0),545(0)) . 4.4)

The coefficients C;,, (m=~—1,1,2) of the transient reso-
nant structures Z,, (¢} appearing in Eq. (3.16) can also be
rewritten by using Eqs. (A2) and (4.1). To lowest non-
vanishing order in v, /wg 4, one finds

C—I,Z
Cp |=i[p44(0)—ppp(0)—a cosd]
C12
—sin‘(%())
X | —Li€ysin®(20) |, (4.5a)
cos“(%@)
C, cos’(16)
Coi |=—ip4p(0)sing | sin’(1g) |, (4.5b)
Ci 2i€; cos®(10)
Cc |, sin*(16)
C | | |=—ipp4(0)sinf | —2ie,sin®10) |, (4.5
Co cos*(16)

where ¢, and €, are given in Eq. (3.23).
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A. Steady-state probe spectrum in and beyond the secular
approximation

Before studying transient probe-absorption spectrum,
we first reexamine the steady-state probe spectrum. As
shown in Eqgs. (3.18) and (3.19) the steady-state spectrum
is independent of initial atomic conditions. To zeroth
order in €=y, /wg, (secular approximation), it con-
sists of an absorption peak and an emission peak for an
off-resonant pump field (A5£0). For a resonant pump
field (A;=0), the probe spectrum vanishes to zeroth or-
der in €;;. These features are illustrated in Fig. 8, where
the spectrum shown for A;=0, although nonvanishing,
is smaller than that shown for A,50 by a factor of order
€.

These features can be explained quantitatively in the
conventional DAP (see Fig. 1). We first note that the
steady-state density matrix elements in the semiclassical
DAP may be obtained from Egs. (4.1}, (2.2), and
(3.2)-(3.4) as (to order €4)

P'l(c)—pilo0)=acosB , "
.6)
pliplec)= —lige;;sind .

The probe transition rate between two dressed states is
proportional to the absolute square of the dipole matrix
element of the two states,®

[ (B, 11p6,14,)| = ,le'gz ' 2‘3054(%9)
= |p21'€2|ZBAB ’
I <An+l ] p(§2|B,, ) I 2: |p21'82 | ZSin“(%e)

= |P21'?”°2\273M )
4.7)
[{(B,,,|p&,|B,)|%=|pyb,I Zsin(16) cos’( 16)
= |P21‘&2\Z(BBB ’
| €4, lp'?';ﬂ 4,) = IPZI'&Z | ?sin’(16) cos*(16)
= \Pzn'%zlzﬁu ’

where ?3’2 is the unit vector of the probe field amplitude
6, and B, is a dimensionless transition rate between
states |{u,) and |v,,,). We can approximate the tran-
sient probe spectrum W (?) as the sum of the secular ap-
proximation W'%'(t) to W(t) (of order |X,!%y; ") and a
first-order correction W'''(t) (of order | X, | ‘0wz, ),
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FIG. 8. Steady-state probe absorption spectra for a “closed"
two-level atom driven by a strong pump field with X/y,=20,
Yn=7v,/2 and (a) A, =0.3X,, (b) A;=0. Note that the spectral
amplitude is greatly reduced when the pump field is resonant.

Wit)y=W' ) +w) . (4.8)

The steady-state probe-absorption spectrum is given in
Eqgs. (3.18)-(3.23). Using Egs. (4.2), (4.6, and (4.7), one
can write the contribution in the secular approximation
as

|
(0 (0)
Puplo)=p, I(oc)
W(e)=|X, |2 B, Re— " —— 1% , (4.9a)
2 “'V=2A_B§ " I‘Mv~t(02—wv“w")
and the contribution beyond the secular approximation?’ as?®
i€psin@ cosflp’, (oo J—py ()] —2p;j3’” ()
W (o )= | X, |2 (B, B,)" " Re R s e
2 M:EM? v H Fp—i—w, )
w=AB, p+p. (4
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where 'y =T =0, ;5=C3,=T), [see Egs. (3.20)],

and w, _, Iis the frequency difference between dressed

states |wv,,,) and |u,) and takes values Q, or
Q,*wg,. Equation (4.9a) is valid to zeroth order in €;,.
To first order in €,, or €, atomic relaxation adds three
dispersion structures' to the steady-state probe spectrum
for an off-resonant pump field. The dispersion structures
at O, =0,1twy, slightly shift these resonances while
that at Q,=Q, may be seen explicitly’ in Fig. 8(a). For
a resonant pump field (all dressed-state populations
equal), the entire spectrum is of order €;; and is made up
of two dispersion structures’ located separately at
Q,=Q,%X, [Fig. 8(b)], which is related to pig’p ()

only [see Eq. (4.9b)].

B. Transient buildup of probe spectral peaks
in the secular approximation

For the study of transient probe spectra, we consider
two kinds of initial conditions—atoms initially prepared
(1) in a pure dressed state and (2) in a superposition of
dressed states (for example, the ground state 1).

The probe spectral peaks occur at® §=0,—0,=0,
Twg,4 as can be seen by examining the coefficients C,,
[Egs. (3.19) and (4.5)]. The probe absorption W(t) is of
order | Y,i°y5 ! at these frequencies. To this order (i.e.,
in the secular approximation), the buildup of probe ab-
sorption and emission peaks may be obtained from Egs.
13.14), (3.16), (3.19), (4.5), and (Al) as the sum of a
nonoscillatory contribution W(t) and oscillatory contri-
bution Win. For atoms prepared initially in a pure
dressed state |u, ) (u=A4,B), ie., §,.0)=1,

F () cos*(18), d=wp,
W =W,)= {0, 6=0
—F,(0)sin*(16), 8=—wp.,,

(4.10)
where
1 ~F21
F n=|Xx,12 {—_ﬁ—-a cos@
I
ﬁr,, —rzl
+e—ﬁ‘——(l—ac059) . 4.11a)
l—eArzl
Fa(l): [YZ ! 2 mam— § COSG
r,
_F‘re—rzt
‘Lrﬁ““ cosd) | . (4.11b)

In the secular approximation the ratio of the peak am-
plitudes at §=*wg , is independent of time and depends
on 6 (or A, /X,) [see also Figs. 3 and 7(a)):

For atoms initially in the ground state 1, g;(0)=1
[i.e., P4q(0)=(1+c0s8)/2, Pgp(0)=(1- cost)/2,
P 45(0)= —(sinB)/2],

Wo=W,(H)+W,(1), (4.12a)

F\(t)cos* (1), b=wp,

W= 10, 8=0 (4.12b)
—F(1)sin*(10), 8=—wg,,
Giin)cos(10), d=wp,

W)= {G1), 8=0 4.12c¢)

Gi(Dsin*(10), 8= —wgy,

where

1 -1yt
Fi()=|X; | cosh |[a——
I,

—{a—-1)——7——F7— |, (413a)

Gi()=1[X, | sin?0 "5 cos(wy 1), (4.13b)

Go1)= lX2|Zsinzete_rzlcos(m“t) . {4.13c)

1
2
Note that G,(t) is proportional to | p ,5(0) |, which im-
plies that the transient oscillations can be traced to a
nonvanishing initial value for the dressed-state coher-
ence.

When the pump field is exactly resonant, the probe
response in the secular approximation takes a much
simpler form. To order |X,|?yy ', the probe response
may be obtained (a) for initial condition g, 4{0)=1 from
Egs. (4.10) and 14.11) as

+£(1), S=*wp,
0, =0

W)= (4.14)

and (b) for initial condition 5,,(0)=1 from Eqgs. (4.12)
and (4.13) as

S(ticoslwg 4t), d=ZFwg,

w1 = (4.15)

11X 2te_rz'cos(a)“t ), 8§=0,

where
r ~,r

le '—e 2
f(t)_4

2
ot 1X,]2. (4.16)

These expressions give a quantitative description (to or-
der | X, |23 ") of transient buildup of the probe spectral
peaks, which are displayed in Figs. 3, 5, and 7. The
transient behavior of the probe peaks arising from atoms
initially in level 1 is accurately represented by the secu-
lar approximation W')(1) to the total absorption spec-
trum W(:). For atoms prepared initially in a pure
dressed state, however, the contribution W''’(¢) beyond
the secular approximation is observable as small oscilla-
tions superimposed on the nonoscillatory contribution of
w' ).

As discussed qualitatively in Sec. II transient probe
spectral components can be viewed in the secular ap-
proximation as arising from tiansitions between dressed

e n aaan
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states even in the transient case. We also see above that
the nonoscillatory contribution W is associated with the
population difference between a lower dressed state
|, ) and an upper dressed state |v,, ), while the os-
cillatory contribution W is related to the coherence be-
tween the dressed states, p 4 g (#). To gain further phys-

ical insight for the transient behavior of the probe spec-
tral peaks, we rewrite their expressions with arbitrary in-
ittal conditions in terms of physical quantities of the
conventional DAP. We first obtain the semiclassical
dressed-state density matrix elements by using Eqs. (4.1),
(2.2), and (3.10a) as (to zeroth order in €;}),

WO =W()+ W)

W= 1P S S B [le " o -

wy n

0
P,

W(t)=—2|X,|?Re 3 p, (1) B,, B, fo’exp[—(rm.frw.m —t")}dr’

wv

>3 f fexpl — (T +iwy Nt

v on

+expl — (T, +iw,,

where ¥

©4p=—wg,, and w,,

v

. 1Hn

states |y, ) and |v, .}, (a) the nonoscillatory contribution W(r) is still proportional to the transition rate B

e o e e e -
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Nt —t)]CB,.-B

implies summation over two transitions for the Q,=£, component, 5
has been explained after Eq. (4.9). Equations (4.19) show that, for a transition between two

T ————— = —————y— —

1%

P —p 30

=[p 44(0)—ppp(0)—a cosBle _r‘1+a cosf ,

(4.17a)
FOh(1)=p 4gl0)e' 20BN (4.17b) ‘ :
4.
which are consistent with the steady-state limit of Eq.
(4.6). It is then possible to use Egs. (4.2), (4.7), and (4.17)
to recast the peak amplitude of probe component at
M=o, , astoorder [X; |2y5!
(4.18)
Lo 0, Q=e, (4.19a) 1
w1V 41 - 0~ 1My 4

)l/’ 04 (t )

BB,

.

t')]dt', %

0, =w

)1/2 (3}

VetV 4

wov'=A4,B, p'H#u, v#v, (4.19b)

Vg by !
. are defined in Egs. (4.7},

v Of the

transition but, different from the steady-state limit, it is proportional to time-imegrated population difference of the
two states, and (b) the amplitude of oscillation from W(t) is proportional to '§ ,5(0)| and ¢ (B By 1172 where y’
represents the other dressed state in the doublet containing |, ). The nonoscillatory contribution W (1) at Q,=0Q,
always vanishes. The ratio of the nonoscillatory contribution W(t) at A, =, +wy, to that at Q,=Q,—wg, is in-

dependent of time and initial conditions and equals — B 45 /B 4 = — cot*(8/2), the same as in the steady state.

C. Transient probe spectra

A simple quantitative expression (to order |X,|?y; ') for the entire transient probe spectrum can also be obtained
in terms of physical quantities in the conventional DAP. Using Eqs. (4.2), (4.7), and (4.17), one can recase the general
expressions for the transient probe spectra given in Egs. (3.14), (3.16), (3.19), {4.5), and (A1) in the form

WO =|X,/*Re I zfexpl[—r‘“+1(ﬂz
uv=A8 n

X1 By dpy 1)

Holt,

— (B B) p,

Equation (4.20) is general expressions for transient probe
spectra in the secular approximation (i.e., to leading or-
der [ X;!% ;") valid for any initial condition.

Equations (4.9) and (4.18)-(4.20) are given in the con-
ventional DAP. Similar expressions in the semiclassical
DAP are readily obtained by changing o, ., to

w,, +Q (w44 =wgg=0) and deleting photon-number

{0Y
p\
4

Y

*l}l'l)](t —l’)l

5
)1/

1= (BB, “#(1’)

/1\

. ()dr,

n+l

wov'=A,B, @W#u, viEy. 4.20

—
principle if one finds g4}’ in the semiclassical DAP.

In the following illustrative examples for transient
probe spectra we set ¥,,=¥,/2 (no collisions, such as in
an atomic beam).

1. Off-resonant pump field

subscripts and the summation over n from those expres- We use expressions for probe absorption given in Egs. T
sions of the conventional DAP. The semiclassical ver-  (3.14) and (3.16) and Appendix A. The full transient
sion of Eqs. (4.18)-(4.20) can be verified from the first  probe absorption spectra for atoms initially in a pure

- . - e —— A ————
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dressed state are given in Fig. 9 corresponding to the
same initial atomic conditions and parameters as in Fig.
3. As is clearly shown in Fig. 9, for atoms initially
prepared in a pure dressed state, absorption-emission
doublet is reached in an essentially nonoscillatory
manner. For atoms initially in the ground state,
p11t0)=1, the full transient probe spectrum is given in
Fig. 10 corresponding to the same initial atomic condi-
tion and parameters as in Fig. 5. One sees that the
steady-state spectrum is reached in an oscillatory
manner. Moreover, at the center of the probe spectrum
0,=Q,, a transient absorption-emission component is
produced for atoms initially prepared in a pure atomic
state, but not for atoms initially prepared in a pure
dressed state. This component is associated with the
dressed-state coherence p 5(1)£0. As implied by Eq.
(4.19b), the oscillation of spectral components reflects
the oscillation of g 45(¢), which further indicates® the
precession of the Bloch vector B about the driving vec-
tor Qg.

Pas(0)=1
X1/ 7==20
8/x,=0.3

(Arbitrary Units)

339(0)=1
X1/72=20
A,/x,=0.3

W
(Arbitrary Units)

FIG. 9. Transient probe-absorption spectra as a function of
both ({2; — Q) /wg 4 and time y 1 for the same situation and in-
itial conditions as in Fig. 3, namely, Y,/y,=20, A,/Y,=0.3,
and (a) P, 4(0)=1, (b) pae(0)=1. The transient probe
response has not yet arrived at its steady-state limit, which is
independent of initial conditions and is given in Fig. 8(a).
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Ell(o)zl
X1/72=20
A,/x,=0.3

W
(Arbitrary Units)

FIG. 10. Same as in Fig. 9 but for a different initial condi-
tion, p1{0)=1. The transient behavior at the peaks is
displayed in Fig. 5.

2. Resonant pump field

We use the expression given in Appendix B to plot the
probe-absorption spectrum for a resonant pump field.
The full transient probe-absorption spectra are given in
Fig. 11, corresponding to the same initial atomic condi-
tions and parameters as in Fig. 7. One sees that the
transient spectrum arising from atoms initially prepared
in a pure dressed state is an asymmetric absorption-
emission doublet which evolves towards the symmetric
steady-state limit shown in Fig. 8(b). The transient spec-
trum arising from atoms initially prepared in a pure
atomic state consists of three oscillatory components
centered at frequency ,=€,, ;X which also eventu-
ally decay to the steady-state limit [see Fig. 8(b)].

V. EFFECTS OF COLLISIONS ON TRANSIENT
PROBE SPECTRA WITH A RESONANT
PUMP FIELD

Collisions can add new features to the probe-
absorption line shape. To study the effects of collisions
in a vapor, the above calculation should be generalized
to account for the atomic motion. Although such a gen-
eralization is not given in this paper, our results can still
be used to investigate a particular collision-induced
feature in the probe spectra. This feature occurs in the
vicinity of Q;=(, and is related to a beat frequency
created in atomic state populations at frequency
6=0,—1,. With allowance for atomic motion § is re-
placed by  8(v)=(0,—k,;v)—(Q,—k,;-v)=5—(k,
—k,)-v. For nearly copropagating waves k,=k, one
finds &8(v)=6 so that atomic motion does not
significantly affect the resonant structure at $=0. Thus,
even by studying the ‘stationary” atom case
(k;'v=Kk,'v=0), we will obtain information about
collision-induced resonances at 6 =0 applicable to atom-
ic vapor,

'y
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The probe response in the presence of a “weak™ pump
field is given by Egs. (B2)-(B5) in Appendix B for a reso-
nant pump field. For the study of collisions, we limit the
initial atomic conditions to atoms in the ground state 1.
Consequently, the discussion in this section is limited to
the initial atomic condition g,,(0)=1, resonant pump
field A, =0. and a weak pump field satisfying

N

Vi< vyt tr =) (5.

When inequality (5.1 holds, the steady-state probe-
absorption profile with a resonant pump field is [see Eqgs.
iB21—(B5)]

. L ¥ Vity o — 37202
uv(x]: “l TS T B
PREST yylyy =y i+ )
(5.2)
z
= a
E ()
=2
-
=
)
1)
i‘
FEEAY 1
o\
1
(0, .
1) ~
-+ Paal0)=1
X1/72=20
w
- L
- T
=
3
!
\\ | .
\\
(1)
Y ~
p1:(0)=1
X1/ 72720
FiG 11 Transient probe-absarption spectra for a resonant
pump ticld as a tunction of probe detuning €2, Qv/V, and
time -7 for the same parameters and initial condition as
Fon 70 namelv Yo7y 200 and b po ot o b gy G - L

The transient probe response has not yet arrived at the steady-
state spectrum, which s independent of initial conditions and
s displayved e Figo ®éb The spectrum i b is symmetric

abaut soro probe detumng 14 ey ).

m

which is basically a Lorentzian profile of full width at
half maximum (FWHM) 2y, and height 'Y, y,'. In
the presence of collisions (y,;>y,/2), a collision-
induced narrow hole of FWHM 2y, and depth
(V3/7.y200 X, Ty, ") (relative depth X7 /y,y,,) appears
at the center of the probe-absorption profile.™*” In the
absence of collisions, this hole is absent and one has the
linear absorption profile for the probe (to order
ReY 37’i1] ).

“e plot the full transient probe spectra for parameters
ta) X;=0.1y,, v¥,=0.1y,; and (b)) Y,;=0.07y,,,
¥,=0.05y,, in Fig. 12. For a clearer illustration, the
transient buildup at hole center ({2, =€) and hole "bor-
ders” (Q,=(1,;+2y,) are plotted in Fig. 13. One sees
that probe-absorption spectrum is symmetric and the
hole is formed after 1 2y; . The probe absorption at
line center first rises rapidly at rate y,;. Then it relaxes
slowly to the steady-state line shape at rate y.. The
transient probe spectrum can be expressed approximate-
Iy as

w
{Arbitrary Units)
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(Arbitrary Units)

O
. S .
RSOOSR
GOSN MK AM A XS
P R0 X A AL A S
,;,, ‘::‘ SO 0o SRR
%S

S
D ARSI SN
WIS ‘::‘::\\\\\s‘ AR
whethetey
,,//I/II//I[[I” '; ,;:::s:‘:\ SRR
(300

i R

é‘\o
’)/)« 0 X1/ ¥2,=0.07
2
! Y2/72,=0.05
FIG. 12 Transient spectra of probe absorption for a weak,

resonant pump field as a function of both probe detuni
1= Q0 /yaand time o with initial condition g0
and parameters () Uy =001 v /7 =000 V7 = 0007,
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T80.6 780.6
™~ &~

§_ Lo
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e O 3O.

X1/721=0.1 X1/¥24=0.07

(&) 72/721=O'1 (b) 72/721=0-05
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Yait Yait

FIG. 13. The transient response at hole center .=, and hole borders (a) Q,=Q,+0.16y,,, (b) 2,=0,%20.127,, for the same
situation and initial condition as in Tig. 12, A hole border is that frequency for which there 1s a local maximum in the steady-state
probe-absorption spectrum. The short lines on the right-hand side indicate the steady-state values.

Yai

Y+

Wit = ;vﬂi

Yiexp(—yat)
27y

Viy2—4v2) y,—[y2cos(81)—5sin(8r)] expl —yat)
. ! H V2 p - } for exp(_%7,2‘,)<<l . (5.3)

Yulya—v2)? 7348

VI. EFFECTS OF COLLISIONS FOR LARGE PUMP DETUNING

The steady-state probe-absorption spectrum is given by Eq. (3.18). For large pump detunings A% 5> Y3, it consists of
a large linear absorption peak at {1, =w,;, 2 “Raman” emission peak at Q,=2, —w,, and a dispersion structure at
Q,=10,. The dispersion structure arises from atomic relaxation and is described by the term Im[Cy /(I", —i8)] in
Eq. (3.18). For large detunings,

(/A <1, y2/vn, 6.1
C can be written as
v 2y, —y s ki X
oML S Lt £ PR T ) P T (6.2)
24, Ay wg 4 Yoy wgy Aj

Consequently, the dispersion structure is of order iy, /oy )(X,/A, ¥ (relative to the linear absorption peak) in the
presence of collisions and of order (., /my )Y, /A1 in the absence of collisions. To order (Y;/A,)° it appears only
when v, #y,/2.

The discussion in this section for transient spectra is limited to initial condition §,,10)=1 and the large pump de-
tuning condition (6.1). Among 12 terms of Im[C,, Z,,. (1)] [see Egs. (3.16), (A1), and (A2)], four (Im =00;02;0,::1)
are resonant at {},=(};. None of the four terms, however, gives a dispersion structure at early times. Only for later
times does Im{C,Z ;) give a dispersion structure. Explicitly, at early timer,

5

S X . ] sinf{wg 4 —sgn(A 8]t
Wit)=1X; “expl —ynt) ~—i!*A~(sm(m,Hl)—S|n)[m,,4—sgn(A|)6]tl)+ Hewp—sgn(A, 3]
264, A ©p 4

for ys 151, 8] <<wgy . (6.3

The transient probe absorption is of order condition (6.1) oscillates many cycles before it is damped

Y, v, MY A at Q,=0,, which is much larger out by relaxation. Consequently, we show only full tran-
than that of steady state [of order 'Y,!°y,'(y,/  sient probe spectra at two sets of times shifted from each
©wp 4 WX, /7A;?). The transient probe spectra under the other by 7 /2wy ). We plot the transient probe spec-
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) 7
Z X1/72=20 = X1/ 7220
i A/x,=4 - :; A/ x =4
]

= 2 Y21/72=1.5 o Yo1/72=0.5
2 =
E £

O !
L 15y O 05 )/ o
Qs
Q2

(a)
EE X1/72=20

= % Ay /x =4
2 Y21/ 72=1.5

FIG. 14. The central part of transient probe spectra in the
presence of collisions (y:/y:=1.51 in the large pump detun-
g case as a function of both frequency (;—€);) /g, and
time (/T (T =27 /wg ) for initial condition §,,(0)=1 and pa-
rameters V,/3:=20, A, /¥, =4. The step length in time ¢ /T is
3 with starting point (a) 1 /T =0 and (b) t /T =1, so that the
transient spectra do not show oscillatory structure, but only an
envelope. The height of the large absorption peak at steady
state is about 56 times as high as that of the highest spectral
point shown in (al,

trum with collisions (y,,=1.5y,) in Fig. 14 and that
without collisions (3,5, =0.5y,) in Fig. 15 for the same
parameters Y,:=20y,, A, =4Y,. The step length in time
in the plotting is 37 (T'=27/wg ! with starting value
ta) 1 =0 and (b) 1 = T'/4, so that the full transient spectra
do not show oscillatory structure but only an “en-
velope.” One sees that the dispersion structure may be
seen in the presence of collisions only after
expl —y )<< 1.
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AN,
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0,

WAL,
Y /!,,’[,I KADD

WA A2
Uy

24
)

) 5 ,
¢ P 15[] O-OKQ - \ weA
2
(a)
@
52 Xi 72=20
=z > Ay x =4
b
= Y21 '72=0.5

(b)

FIG. 15. Same as in Fig. 14 but in the absence of collision
(y2/72=0.5). The height of the large absorption peak at
steady state is about 85 times as high as that of the highest
spectral point shown in (a).

VII. DISCUSSION

Atoms in the upper (lower) dressed state correspond
to the Bloch vector B parallel (antiparallel) to the driv-
ing vector Qp.""7'% Preparing atoms in a pure dressed
state can be accomplished by a phase-switching
method.'* """ For a resonant pump field, preparing atoms
in a pure dressed state is made by an application of a
7/2 pulse followed by a quick 7/2 phase change.'” For
an off-resonant pump field A;>0 (A, <0), preparing
atoms in the lower (upper) dressed state can be done by
applying a pulse at pump frequency Q, followed by a
auick phasc change as described in Ref. 12. Preparing
atoms in the upper (lower) dressed state with 4,>0
(A)<0), however, needs more discussion. If
Vi >V3ITA e, {0-7/2 <7/6,a pulse of duration
7 at pump frequency Q, followed by a fast phase in-
crease (decrease) Ad, aligns the Bloch vector B parallel
(antiparallel) to the driving vector Q; —atoms in the




A _J

o cid

—rT Ty

upper (lower) dressed state, where
r=wg, arccos {1 —[2cos*(im+ | tr—16)]7!}
=wj) arccos {1—[1+(X,/4,*]'*} ", (7.1)
and
(1—2sin {7 —6 )"

| cos@ |

Ad =m— arctan

=7~ arctan ([1+(X,/4,7]'"?

XA+ (X, 7A P 2 =24)72,

7.2)

f A>0 (A <0) and X, <V3Al, e,
[@—m/2| >7/6, a pulse at frequency Q, followed by a
quick phase change (one pulse-phase-switching cycle)
can never put atoms (initially in the level 1) in the upper
(lower) dressed state. In this case the preparation of the
upper (lower) dressed state can be accomplished by the
application of two pulse-phase-switching cycles (for ex-
ample, the first cycle consists of a pulse of duration
7/wg 4 with frequency ), and a 7 phase change) (when
'0—w/2| <3w/10) or more such cycles (when
10—mw/2 . >3w/10). It can also be made by first apply-
ing a resonant pulse of area 7 to put atoms in level 2
and then employing one pulse-phase-switching cycle at
frequency Q,.

In summary, the transient response of two-level atoms
in an atomic beam to a step-function weak probe and a
strong pump field has been studied. The transient spec-
tra of probe absorption is a sensitive function of the ini-
tial conditions of the dressed atoms. When atoms are in-
itially in a superposition of dressed states, the absorption
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and emission peaks exhibit oscillations as they evolve to-
wards their steady-state values. Moreover, novel spec-
tral features at Q,={); can be observed in transient
probe spectra, which gives absorption and emission al-
ternately and is totally absent in the steady-state limit.
In contrast, when atoms are initially prepared in a pure
dressed state, the absorption and emission peaks do not
oscillate appreciably as they approach the same steady-
state values. For a resonant pump field spectral com-
ponents at ,=0,%X,, which are absent in the steady-
state limit, can be observed in the transient regime. The
transient probe spectrum arising from atoms initially
prepared in a pure dressed state consists of one absorp-
tion and one emission component, while that arising
from atoms initially in an atomic state is symmetric and
consists of three oscillatory components. All these can
be physically explained by using the conventional
dressed-atom picture (DAP). In the secular approxima-
tion (i.e., to leading order |Y,|%y; '), Eq. (4.20) gives
quantitative expressions for probe spectra valid in both
the transient and steady-state limits.

The effects of collisions on transient probe spectra
were also studied. The narrow central hole on the large
absorption peak found in the steady state for a resonant
weak pump field is formed after # 2 5. The dispersion
structure at Q,=(, found in the steady state of the
large pump detuning case may be seen in the presence of
collisions only after ¢ >>%5, .
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APPENDIX A: EXPRESSION FOR Z,,,(t) AND C,,,

1— exp[ —(I"}—i8)t]

Zop= ——
o) r,—is , (Ala)
1—exp} —[T)—itdFwy ]t}
Z. = = (AIb)
rz—l(6+(0514)
50—
Zor= 93“—%——' expl — 1), (Alc)
expl = yt)—expt —[T;—i(d Fwg,) ]t}
Z.u:**wfjf' -2 R (Ald)
rg—-rl~l(8+a)3,,)
exp[ — (I, Fiwg ] — exp[ — ([ —id)t]
L= et B - (Ale)
MN—T,—i(dFwg,)
[ O1) — -
Z, = m“%—" exp[ —(T;+iwgy ], (A1D
expli{d Twg )t ]— explTiwg 1)
Z., = A expl~Tyr)
Lo (87 2wp ) expl~Tar) (Alg)
Cipo=—taley —€, cos*01sin®0 cosd | (A2a)
- T ———
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Cipo==11a(lt cos®)[i( 1+ cosh) cosd + (€, — ey cos’6) sin’6] , (A2b)
Cor = +€0{u(0)sind —[w(0)+a ] cosb} sin*(26) , (A2c)
Ciyy=131£cosf)i{u(0)sind—[w(0)+a]cosd—ep sinf cosd {1+ cosd)

—2€{u(0)sin8—[w(0)+a Jcosh] sin?d cosd) , (A2d)
Cyy = —1isin@}[u(0)cosO+tiv(0)+w(0)sinB][(1+ cosf)(1 Fieg)—2i€qsin®6 cosf]
tie; sinf( 1+ cos@) +i€ysinfiv(0)(1F cosf)sinftw(0) 1+ cosG-}-%sinZG)]] , (A2e)
Co,+1=— 1 sinBli[u(0) cosf+iv(0) 4 w(0)sinf+ie,sinB](1F cosh)
+€of £(1£ cosO)(1—3sin’0)[u(0) cosf+iv(0)+w(0)sind]
+1u(0)sin*(20) +iv(0)({ sin*0— 2+ sin’6 cosB)
+w(0)(2+3sin*0— £ sin®0 — sin@ cosO F 3 sinf cos’@+2sin’6)}) , (A2D)
C., _1=*1€ u(0)cosf+tiv(0)+w(0)sind]( 1+cosf)sinb | (A2g)
where ¢ =—HingT "FLEgNEES) (B3e)
Ty=y2+70c0s’6 , (Ala) co. 1= —Lin(EXIE), (B3
Fy=Lyy+ ¥y —yocos0) , (A3b) cop = tlE 1R LiEMNELIE) (B3g)
Yo=Y:=VYu, (Alc) where
cosf=A4,/wp,, sinf=X,/wg,, 0<0<7 (A4) n=Y,/0, o=0G-1yH!"?, (B4a)
a:[cos:9+(}’31/}'1)Sin36]"=y:/r| y (AS) e}=€3/(1+€:?31) , (B4b)
€2=3:/0py, €=V Wpy. €=V wpy . (A6 E=1n[w(0)+1Eu(0)+ Ley & +E)] ,
: ) T (Bdc)

APPENDIX B: EXACT SOLUTION OF PROBE
ABSORPTION FOR A RESONANT PUMP FIELD

When the pump field is exactly resonant (A, =0), ex-
pressions for all the eigenvalues of the matrix L are quite
simple. Consequently, ﬁ"' is readily obtained to all or-
ders in y,/Y, and y,, /Y, from Egs. (3.10b). Again, g5}’
can be written in the form

pali=Yohie ™Y 1gir)e™, (B1)

where ¢ (1) gives a four-wave-mixing response and

5
P

h(t)=1 ﬁ S i) (B2)
R

Con= HEE , (B3a)

cop=tefiegtnl—teE)] . (B3b)

Cop=0, (B3c¢)

o a=tinul0), (B3d)

6_::-![1'(0)—%63] ,

z;,, are obtained from Z,, [see Egs. (AD] by changing
wp 4 10 03 &, &, and §, are the values of €, €,;, and ¢,
at A, =0, respectively.

Probe absorption is proportional to

W)=2Y, ' Imh(0), (BS)
which has the symmetry relation
W(t;6,u(0),0(0),w(0))
=W(t; -5, —u(0),0(0),w(0)), (B6a)

or in terms of the semiclassical dressed-state initial con-
ditions,

W(:8,5 440005 45(0)=W(t; —8,5p5(0),5 5(0)) .
(B6b)

As t ~ o, W is only a function of 6. Consequently, in
steady state the probe absorption spectrum with a reso-
nant pump field is symmetric about Q,=Q,.
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